Suppr超能文献

优化残差网络和 VGG 进行 EEG 信号分类:识别情感识别的理想通道。

Optimizing Residual Networks and VGG for Classification of EEG Signals: Identifying Ideal Channels for Emotion Recognition.

机构信息

Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan.

出版信息

J Healthc Eng. 2021 Mar 30;2021:5599615. doi: 10.1155/2021/5599615. eCollection 2021.

Abstract

Emotion is a crucial aspect of human health, and emotion recognition systems serve important roles in the development of neurofeedback applications. Most of the emotion recognition methods proposed in previous research take predefined EEG features as input to the classification algorithms. This paper investigates the less studied method of using plain EEG signals as the classifier input, with the residual networks () as the classifier of interest. having excelled in the automated hierarchical feature extraction in raw data domains with vast number of samples (e.g., image processing) is potentially promising in the future as the amount of publicly available EEG databases has been increasing. Architecture of the original designed for image processing is restructured for optimal performance on EEG signals. The arrangement of convolutional kernel dimension is demonstrated to largely affect the model's performance on EEG signal processing. The study is conducted on the Shanghai Jiao Tong University Emotion EEG Dataset (SEED), with our proposed architecture achieving 93.42% accuracy on the 3-class emotion classification, compared to the original at 87.06% accuracy. Our proposed architecture has also achieved a model parameter reduction of 52.22% from the original . We have also compared the importance of different subsets of EEG channels from a total of 62 channels for emotion recognition. The channels placed near the anterior pole of the temporal lobes appeared to be most emotionally relevant. This agrees with the location of emotion-processing brain structures like the insular cortex and amygdala.

摘要

情绪是人类健康的一个重要方面,情绪识别系统在神经反馈应用的发展中起着重要的作用。以前的研究中提出的大多数情绪识别方法都将预定义的 EEG 特征作为分类算法的输入。本文研究了一种使用普通 EEG 信号作为分类器输入的较少研究的方法,使用的分类器是残差网络 (Residual Networks) ()。残差网络在具有大量样本(例如图像处理)的原始数据域中自动分层特征提取方面表现出色,随着可用 EEG 数据库数量的增加,它在未来具有很大的潜力。针对图像处理设计的原始 结构经过重新构建,以在 EEG 信号上实现最佳性能。研究表明,卷积核维度的排列对模型在 EEG 信号处理方面的性能有很大影响。该研究是在上海交通大学情绪 EEG 数据集 (SEED) 上进行的,我们提出的 架构在 3 类情绪分类上的准确率为 93.42%,而原始 架构的准确率为 87.06%。与原始 架构相比,我们提出的 架构的模型参数减少了 52.22%。我们还比较了从总共 62 个通道中选择不同子集的 EEG 通道对情绪识别的重要性。靠近颞叶前极的通道似乎与情绪最相关。这与情绪处理的大脑结构的位置一致,如脑岛和杏仁核。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/391f/8024101/e53c7f349a21/JHE2021-5599615.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验