Suppr超能文献

基于状态相关高斯核的功率谱修正,用于精确瞬时心率估计。

State-dependent Gaussian kernel-based power spectrum modification for accurate instantaneous heart rate estimation.

机构信息

Department of Biomedical Engineering, Wonkwang University College of Medicine, Iksan, Republic of Korea.

出版信息

PLoS One. 2019 Apr 5;14(4):e0215014. doi: 10.1371/journal.pone.0215014. eCollection 2019.

Abstract

Accurate estimation of the instantaneous heart rate (HR) using a reflectance-type photoplethysmography (PPG) sensor is challenging because the dominant frequency observed in the PPG signal corrupted by motion artifacts (MAs) does not usually overlap the true HR, especially during high-intensity exercise. Recent studies have proposed various MA cancellation and HR estimation algorithms that use simultaneously measured acceleration signals as noise references for accurate HR estimation. These algorithms provide accurate results with a mean absolute error (MAE) of approximately 2 beats per minute (bpm). However, some of their results deviate significantly from the true HRs by more than 5 bpm. To overcome this problem, the present study modifies the power spectrum of the PPG signal by emphasizing the power of the frequency corresponding to the true HR. The modified power spectrum is obtained using a Gaussian kernel function and a previous estimate of the instantaneous HR. Because the modification is effective only when the previous estimate is accurate, a recently reported finite state machine framework is used for real-time validation of each instantaneous HR result. The power spectrum of the PPG signal is modified only when the previous estimate is validated. Finally, the proposed algorithm is verified by rigorous comparison of its results with those of existing algorithms using the ISPC dataset (n = 23). Compared to the method without MA cancellation, the proposed algorithm decreases the MAE value significantly from 6.73 bpm to 1.20 bpm (p < 0.001). Furthermore, the resultant MAE value is lower than that obtained by any other state-of-the-art method. Significant reduction (from 10.89 bpm to 2.14 bpm, p < 0.001) is also shown in a separate experiment with 24 subjects.

摘要

使用反射式光电容积脉搏波(PPG)传感器准确估计瞬时心率(HR)具有挑战性,因为运动伪影(MA)污染的 PPG 信号中观察到的主导频率通常与真实 HR 不重叠,尤其是在高强度运动期间。最近的研究提出了各种 MA 消除和 HR 估计算法,这些算法同时使用测量的加速度信号作为噪声参考,以实现准确的 HR 估计。这些算法的平均绝对误差(MAE)约为 2 次/分钟(bpm),提供了准确的结果。然而,它们的一些结果与真实 HR 的偏差超过 5 bpm。为了克服这个问题,本研究通过强调与真实 HR 对应的频率的功率来修改 PPG 信号的功率谱。使用高斯核函数和之前的瞬时 HR 估计来获得修改后的功率谱。由于仅当之前的估计准确时,修改才有效,因此使用最近报告的有限状态机框架来实时验证每个瞬时 HR 结果。仅当之前的估计得到验证时,才会修改 PPG 信号的功率谱。最后,通过使用 ISPC 数据集(n = 23)对现有算法的结果进行严格比较来验证所提出的算法。与没有 MA 消除的方法相比,所提出的算法将 MAE 值从 6.73 bpm 显著降低到 1.20 bpm(p < 0.001)。此外,所得的 MAE 值低于任何其他最先进方法的值。在另一个 24 名受试者的实验中,也显示出显著降低(从 10.89 bpm 降低到 2.14 bpm,p < 0.001)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda1/6450646/17c7215886b8/pone.0215014.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验