Kyritsis Konstantinos, Diou Christos, Delopoulos Anastasios
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4229-4232. doi: 10.1109/EMBC.2019.8857275.
Automated and objective monitoring of eating behavior has received the attention of both the research community and the industry over the past few years. In this paper we present a method for automatically detecting meals in free living conditions, using the inertial data (acceleration and orientation velocity) from commercially available smartwatches. The proposed method operates in two steps. In the first step we process the raw inertial signals using an End-to-End Neural Network with the purpose of detecting the bite events throughout the recording. During the next step, we process the resulting bite detections using signal processing algorithms to obtain the final meal start and end timestamp estimates. Evaluation results obtained from our Leave One Subject Out experiments using our publicly available FIC and FreeFIC datasets, exhibit encouraging results by achieving an F1/Average Jaccard Index of 0.894/0.804.
在过去几年中,饮食行为的自动化和客观监测受到了研究界和行业的关注。在本文中,我们提出了一种在自由生活条件下自动检测用餐的方法,该方法使用市售智能手表的惯性数据(加速度和方向速度)。所提出的方法分两步运行。第一步,我们使用端到端神经网络处理原始惯性信号,目的是在整个记录过程中检测咬食事件。在下一步中,我们使用信号处理算法处理得到的咬食检测结果,以获得最终的用餐开始和结束时间戳估计值。使用我们公开可用的FIC和FreeFIC数据集进行的留一法实验所获得的评估结果显示出令人鼓舞的结果,F1/平均杰卡德指数达到了0.894/0.804。