Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712.
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2317240121. doi: 10.1073/pnas.2317240121. Epub 2024 Mar 1.
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
尽管核基因组和细胞器基因组位于同一个细胞中,但它们的进化速度可能有很大差异。在大多数两侧对称动物中,线粒体 DNA(mtDNA)的进化速度比核 DNA 快,而这种趋势在植物中通常相反。然而,在一些特殊的被子植物类群中,与亲缘关系较近的谱系相比,mtDNA 的替代率增加了约 5000 倍。导致这种加速的机制通常未知。由于植物依赖同源重组来修复 mtDNA 损伤,我们假设 mtDNA 拷贝数可能预测进化率,因为较低的拷贝数可能为这些修复机制提供较少的模板。为了支持这一假说,我们发现,在代表 3 亿年进化的 60 种不同种子植物中,mtDNA 同义替换率的变异有 47%可以用拷贝数来解释。拷贝数与线粒体基因组大小呈负相关,这可能是突变率变异的原因或结果。这两种关系都是 mtDNA 所特有的,在质体 DNA 中没有观察到。这些结果表明,同源重组修复在植物 mtDNA 替代率的驱动中发挥了作用,并可能更广泛地解释真核生物 mtDNA 进化的变异。我们的研究结果还对突变率、基因组大小、选择效率和漂变障碍假说之间的关系等更广泛的问题做出了贡献。