Suppr超能文献

聚合物纳米载体自主穿越植物细胞壁,实现蛋白质递送至应激感应部位。

Polymeric Nanocarriers Autonomously Cross the Plant Cell Wall and Enable Protein Delivery for Stress Sensing.

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Molecular Biology and Centre for Computational and Integrative Biology, Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.

出版信息

Adv Mater. 2024 Oct;36(41):e2409356. doi: 10.1002/adma.202409356. Epub 2024 Aug 16.

Abstract

Delivery of proteins in plant cells can facilitate the design of desired functions by modulation of biological processes and plant traits but is currently limited by narrow host range, tissue damage, and poor scalability. Physical barriers in plants, including cell walls and membranes, limit protein delivery to desired plant tissues. Herein, a cationic high aspect ratio polymeric nanocarriers (PNCs) platform is developed to enable efficient protein delivery to plants. The cationic nature of PNCs binds proteins through electrostatic. The ability to precisely design PNCs' size and aspect ratio allowed us to find a cutoff of ≈14 nm in the cell wall, below which cationic PNCs can autonomously overcome the barrier and carry their cargo into plant cells. To exploit these findings, a reduction-oxidation sensitive green fluorescent protein (roGFP) is deployed as a stress sensor protein cargo in a model plant Nicotiana benthamiana and common crop plants, including tomato and maize. In vivo imaging of PNC-roGFP enabled optical monitoring of plant response to wounding, biotic, and heat stressors. These results show that PNCs can be precisely designed below the size exclusion limit of cell walls to overcome current limitations in protein delivery to plants and facilitate species-independent plant engineering.

摘要

蛋白质在植物细胞中的递送可以通过调节生物过程和植物特性来促进期望功能的设计,但目前受到宿主范围狭窄、组织损伤和较差的可扩展性的限制。植物中的物理屏障,包括细胞壁和细胞膜,限制了蛋白质递送到期望的植物组织。本文开发了一种阳离子高纵横比聚合物纳米载体(PNC)平台,以实现蛋白质向植物的有效递送。PNC 的阳离子性质通过静电作用与蛋白质结合。精确设计 PNC 大小和纵横比的能力使我们能够找到细胞壁中的≈14nm 的截止值,低于该值,阳离子 PNC 可以自主克服障碍并将其货物带入植物细胞。为了利用这些发现,将氧化还原敏感的绿色荧光蛋白(roGFP)作为应激传感器蛋白货物部署在模式植物烟草和常见作物植物,包括番茄和玉米中。PNC-roGFP 的体内成像使我们能够光学监测植物对创伤、生物和热胁迫的反应。这些结果表明,PNC 可以精确设计成小于细胞壁的尺寸排除限制,以克服当前蛋白质递送到植物中的限制,并促进与物种无关的植物工程。

相似文献

1
Polymeric Nanocarriers Autonomously Cross the Plant Cell Wall and Enable Protein Delivery for Stress Sensing.
Adv Mater. 2024 Oct;36(41):e2409356. doi: 10.1002/adma.202409356. Epub 2024 Aug 16.
2
Targeted Drug Delivery for Sustainable Crop Protection: Transport and Stability of Polymeric Nanocarriers in Plants.
Adv Sci (Weinh). 2021 Jun;8(11):e2100067. doi: 10.1002/advs.202100067. Epub 2021 Mar 19.
3
Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles.
Adv Sci (Weinh). 2022 Apr;9(10):e2105373. doi: 10.1002/advs.202105373. Epub 2022 Feb 3.
4
Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.
J Pharmacol Exp Ther. 2006 Jun;317(3):1161-9. doi: 10.1124/jpet.105.098970. Epub 2006 Feb 27.
5
Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers.
Environ Sci Technol. 2023 Jun 6;57(22):8269-8279. doi: 10.1021/acs.est.3c01154. Epub 2023 May 25.
6
ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses.
Plant Cell Physiol. 2013 Jun;54(6):944-59. doi: 10.1093/pcp/pct047. Epub 2013 Mar 29.
7
Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
Acc Chem Res. 2013 Mar 19;46(3):792-801. doi: 10.1021/ar3000986. Epub 2013 Feb 6.
8
Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants.
Adv Colloid Interface Sci. 2022 Jul;305:102695. doi: 10.1016/j.cis.2022.102695. Epub 2022 May 13.
9
The plasma membrane proteome of maize roots grown under low and high iron conditions.
J Proteomics. 2013 Oct 8;91:605-18. doi: 10.1016/j.jprot.2013.01.006. Epub 2013 Jan 24.

引用本文的文献

2
Smart nanocarriers for plant genetic engineering.
Plant Commun. 2025 Jul 14;6(7):101422. doi: 10.1016/j.xplc.2025.101422. Epub 2025 Jun 19.
3
Molecular aspects of heat stress sensing in land plants.
Plant J. 2025 Mar;121(6):e70069. doi: 10.1111/tpj.70069.
4
High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants.
Nano Lett. 2025 Jan 15;25(2):681-690. doi: 10.1021/acs.nanolett.4c04704. Epub 2024 Dec 30.

本文引用的文献

3
Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration.
Front Genome Ed. 2023 Jul 20;5:1209586. doi: 10.3389/fgeed.2023.1209586. eCollection 2023.
4
Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers.
Environ Sci Technol. 2023 Jun 6;57(22):8269-8279. doi: 10.1021/acs.est.3c01154. Epub 2023 May 25.
5
Temperature-Responsive Bottlebrush Polymers Deliver a Stress-Regulating Agent for Prolonged Plant Heat Stress Mitigation.
ACS Sustain Chem Eng. 2023 Feb 14;11(8):3346-3358. doi: 10.1021/acssuschemeng.2c06461. eCollection 2023 Feb 27.
6
In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants.
Nat Nanotechnol. 2023 Feb;18(2):205-216. doi: 10.1038/s41565-022-01274-2. Epub 2022 Dec 15.
7
Potential applications of ficin in the production of traditional cheeses and protein hydrolysates.
JDS Commun. 2021 Jun 3;2(5):233-237. doi: 10.3168/jdsc.2020-0073. eCollection 2021 Sep.
8
Drug Delivery in Plants Using Silk Microneedles.
Adv Mater. 2023 Jan;35(2):e2205794. doi: 10.1002/adma.202205794. Epub 2022 Dec 8.
9
Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo.
Nat Metab. 2022 Jun;4(6):651-662. doi: 10.1038/s42255-022-00591-z. Epub 2022 Jun 27.
10
Genotype-independent plant transformation.
Hortic Res. 2022 Mar 14;9:uhac047. doi: 10.1093/hr/uhac047. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验