Suppr超能文献

相似文献

1
Polymeric Nanocarriers Autonomously Cross the Plant Cell Wall and Enable Protein Delivery for Stress Sensing.
Adv Mater. 2024 Oct;36(41):e2409356. doi: 10.1002/adma.202409356. Epub 2024 Aug 16.
2
Targeted Drug Delivery for Sustainable Crop Protection: Transport and Stability of Polymeric Nanocarriers in Plants.
Adv Sci (Weinh). 2021 Jun;8(11):e2100067. doi: 10.1002/advs.202100067. Epub 2021 Mar 19.
3
Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles.
Adv Sci (Weinh). 2022 Apr;9(10):e2105373. doi: 10.1002/advs.202105373. Epub 2022 Feb 3.
4
Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.
J Pharmacol Exp Ther. 2006 Jun;317(3):1161-9. doi: 10.1124/jpet.105.098970. Epub 2006 Feb 27.
5
Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers.
Environ Sci Technol. 2023 Jun 6;57(22):8269-8279. doi: 10.1021/acs.est.3c01154. Epub 2023 May 25.
6
ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses.
Plant Cell Physiol. 2013 Jun;54(6):944-59. doi: 10.1093/pcp/pct047. Epub 2013 Mar 29.
7
Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
Acc Chem Res. 2013 Mar 19;46(3):792-801. doi: 10.1021/ar3000986. Epub 2013 Feb 6.
8
Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants.
Adv Colloid Interface Sci. 2022 Jul;305:102695. doi: 10.1016/j.cis.2022.102695. Epub 2022 May 13.
9
The plasma membrane proteome of maize roots grown under low and high iron conditions.
J Proteomics. 2013 Oct 8;91:605-18. doi: 10.1016/j.jprot.2013.01.006. Epub 2013 Jan 24.

引用本文的文献

2
Smart nanocarriers for plant genetic engineering.
Plant Commun. 2025 Jul 14;6(7):101422. doi: 10.1016/j.xplc.2025.101422. Epub 2025 Jun 19.
3
Molecular aspects of heat stress sensing in land plants.
Plant J. 2025 Mar;121(6):e70069. doi: 10.1111/tpj.70069.
4
High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants.
Nano Lett. 2025 Jan 15;25(2):681-690. doi: 10.1021/acs.nanolett.4c04704. Epub 2024 Dec 30.

本文引用的文献

3
Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration.
Front Genome Ed. 2023 Jul 20;5:1209586. doi: 10.3389/fgeed.2023.1209586. eCollection 2023.
4
Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers.
Environ Sci Technol. 2023 Jun 6;57(22):8269-8279. doi: 10.1021/acs.est.3c01154. Epub 2023 May 25.
5
Temperature-Responsive Bottlebrush Polymers Deliver a Stress-Regulating Agent for Prolonged Plant Heat Stress Mitigation.
ACS Sustain Chem Eng. 2023 Feb 14;11(8):3346-3358. doi: 10.1021/acssuschemeng.2c06461. eCollection 2023 Feb 27.
6
In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants.
Nat Nanotechnol. 2023 Feb;18(2):205-216. doi: 10.1038/s41565-022-01274-2. Epub 2022 Dec 15.
7
Potential applications of ficin in the production of traditional cheeses and protein hydrolysates.
JDS Commun. 2021 Jun 3;2(5):233-237. doi: 10.3168/jdsc.2020-0073. eCollection 2021 Sep.
8
Drug Delivery in Plants Using Silk Microneedles.
Adv Mater. 2023 Jan;35(2):e2205794. doi: 10.1002/adma.202205794. Epub 2022 Dec 8.
9
Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo.
Nat Metab. 2022 Jun;4(6):651-662. doi: 10.1038/s42255-022-00591-z. Epub 2022 Jun 27.
10
Genotype-independent plant transformation.
Hortic Res. 2022 Mar 14;9:uhac047. doi: 10.1093/hr/uhac047. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验