Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Facultad de Cs. Exactas Físico Químico y Naturales, Departamento de Química, 5800 Río Cuarto, Argentina.
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Facultad de Cs. Exactas Físico Químico y Naturales, Departamento de Química, 5800 Río Cuarto, Argentina; INFIQC (CONICET - Universidad Nacional de Córdoba), Ciudad Universitaria, X5000HUA Córdoba, Argentina; Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
Colloids Surf B Biointerfaces. 2020 Apr;188:110801. doi: 10.1016/j.colsurfb.2020.110801. Epub 2020 Jan 15.
A commercial biomedical Polyimide (PI) film was topographically and chemically modified by generating micrometric periodic arrays of lines using Direct Laser Interference Patterning (DLIP) in order to improve antifouling and antibacterial properties. DLIP patterning was performed with periods from 1 μm to 10 μm. The physical modification of the surface was characterized by SEM, AFM and contact angle measurements and, the chemical composition of the ablated surfaces was analyzed by ATR-IR and XPS spectroscopies. The antibacterial effects were evaluated through the effect on Pseudomonas aeruginosa colonies growth on the LB (Luria Bertani) broth. The results showed that the laser treatment change the topography and as a consequence the chemistry surface, also that the microstructured surfaces with periods below 2 μm, exhibited a significant bacterial (P. aeruginosa) adhesion decrease compared with non-structured surfaces or with surfaces with periods higher than 2 μm. The results suggest that periodic topography only confer antifouling properties and reduction of the biofilm formation when the microstructure presents periods ranging from 1 μm to 2 μm. On the other hand, the topography that confer strong antifouling superficial properties persists at long incubation times. In that way, polymer applications in the biosciences field can be improved by a surface topography modification using a simple, single-step laser-assisted ablation method.
商业生物医学用聚酰亚胺(PI)薄膜通过使用直写激光干涉图案化(DLIP)在微米级生成周期性线阵列来进行形貌和化学改性,以提高抗污染和抗菌性能。DLIP 图案化的周期从 1 μm 到 10 μm。通过 SEM、AFM 和接触角测量对表面的物理改性进行了表征,并通过 ATR-IR 和 XPS 光谱分析了烧蚀表面的化学成分。通过对 LB(Luria Bertani)肉汤中铜绿假单胞菌菌落生长的影响来评估抗菌效果。结果表明,激光处理改变了形貌,因此改变了表面化学性质,而且,与非结构化表面或周期大于 2 μm 的表面相比,周期低于 2 μm 的微结构化表面表现出明显的细菌(铜绿假单胞菌)附着减少。结果表明,只有当微结构的周期在 1 μm 到 2 μm 之间时,周期性形貌才能赋予抗污染特性并减少生物膜的形成。另一方面,赋予强抗污染表面特性的形貌在长时间孵育后仍然存在。通过使用简单的单步激光辅助烧蚀方法对表面形貌进行修饰,可以提高聚合物在生物科学领域的应用。