Gallarato L A, Mulko L E, Dardanelli M S, Barbero C A, Acevedo D F, Yslas E I
Departamento de Biología Molecular, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal No. 3, X580BYA Río Cuarto, Argentina.
Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal No. 3, X580BYA Río Cuarto, Argentina.
Colloids Surf B Biointerfaces. 2017 Feb 1;150:1-7. doi: 10.1016/j.colsurfb.2016.11.014. Epub 2016 Nov 9.
Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters.
生物膜形成是微生物适应环境的一种生存策略。生物膜中的微生物细胞对抗生素和免疫反应产生耐受性和抗性,增加了微生物感染临床治疗的难度。固体界面的表面化学和微/纳米形貌在介导微生物活性和黏附中起主要作用。研究了表面化学成分和形貌对铜绿假单胞菌黏附及活力的影响。通过原位聚合在聚合物(聚对苯二甲酸乙二酯)表面覆盖一层导电聚合物(聚苯胺,PANI)薄膜,并通过直接激光干涉图案化(DLIP)进行微结构化处理。研究了铜绿假单胞菌在不同表面上的活力。通过水接触角测量、扫描电子显微镜和原子力显微镜对表面的物理化学性质进行了表征。利用原子力显微镜和扫描电子显微镜对细菌生物膜进行成像。与底物(聚对苯二甲酸乙二酯)相比,铜绿假单胞菌在聚苯胺表面的活力降低,对聚苯胺薄膜进行微结构化处理后活力下降得更多。此外,使用具有不同化学成分的聚合物和/或具有不同形貌的相同聚合物可以改善生物膜的减少情况。这两种方法都能减少细菌附着和生物膜形成。这些发现对于生物医学工程应用的材料,如假体或导管等医疗器械,具有重大影响。