Mulko Lucinda, Soldera Marcos, Lasagni Andrés Fabián
Technische Universität Dresden, Institut für Fertigungstechnik, George-Baehr-Str. 3c, 01069, Dresden, Germany.
PROBIEN-CONICET, Dto. de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina.
Nanophotonics. 2021 Dec 6;11(2):203-240. doi: 10.1515/nanoph-2021-0591. eCollection 2022 Jan.
Direct laser interference patterning (DLIP) is a laser-based surface structuring method that stands out for its high throughput, flexibility and resolution for laboratory and industrial manufacturing. This top-down technique relies on the formation of an interference pattern by overlapping multiple laser beams onto the sample surface and thus producing a periodic texture by melting and/or ablating the material. Driven by the large industrial sectors, DLIP has been extensively used in the last decades to functionalize metallic surfaces, such as steel, aluminium, copper or nickel. Even so, DLIP processing of non-metallic materials has been gaining popularity in promising fields such as photonics, optoelectronics, nanotechnology and biomedicine. This review aims to comprehensively collect the main findings of DLIP structuring of polymers, ceramics, composites, semiconductors and other non-metals and outline their most relevant results. This contribution also presents the mechanisms by which laser radiation interacts with non-metallic materials in the DLIP process and summarizes the developed surface functions and their applications in different fields.
直接激光干涉图案化(DLIP)是一种基于激光的表面结构化方法,因其在实验室和工业制造中的高吞吐量、灵活性和分辨率而脱颖而出。这种自上而下的技术依赖于通过将多个激光束重叠到样品表面上形成干涉图案,从而通过熔化和/或烧蚀材料产生周期性纹理。在大型工业部门的推动下,DLIP在过去几十年中被广泛用于使金属表面功能化,如钢、铝、铜或镍。即便如此,DLIP对非金属材料的加工在光子学、光电子学、纳米技术和生物医学等有前景的领域中也越来越受欢迎。本综述旨在全面收集DLIP对聚合物、陶瓷、复合材料、半导体和其他非金属进行结构化的主要研究结果,并概述其最相关的成果。本论文还介绍了在DLIP过程中激光辐射与非金属材料相互作用的机制,并总结了所开发的表面功能及其在不同领域的应用。