Suppr超能文献

深圳技术大学-中山大学角膜溃疡自动分割与分类数据集

The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers.

机构信息

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

出版信息

Sci Data. 2020 Jan 20;7(1):23. doi: 10.1038/s41597-020-0360-7.

Abstract

Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.

摘要

角膜溃疡是一种常见的眼科症状。需要分割算法从眼部染色图像中识别和量化角膜溃疡。由于缺乏高质量的数据集(眼部染色图像和相应的金标准溃疡分割标签),特别是对于基于监督学习的分割算法,这些算法的发展受到了阻碍。在这种情况下,我们准备了一个包含 712 张眼部染色图像和相关的片状角膜溃疡分割标签的数据集。除了片状角膜溃疡的分割标签外,我们还为每张图像提供了三分类标签:首先,每张图像都有一个关于其一般溃疡模式的标签;其次,每张图像都有一个关于其特定溃疡模式的标签;第三,每张图像都有一个表示其溃疡严重程度的标签。这个数据集不仅为研究不同的角膜溃疡分割和分类算法的准确性和可靠性提供了极好的机会,而且还推进了新的基于监督学习的算法的发展,特别是在深度学习框架中的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec0/6971241/1e7a3b9e4849/41597_2020_360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验