Suppr超能文献

一个大型的开源中风解剖大脑图像数据集和手动病变分割数据集。

A large, open source dataset of stroke anatomical brain images and manual lesion segmentations.

机构信息

University of Southern California, Los Angeles, California 90089, USA.

University of California, Irvine, Irvine, California 92697, USA.

出版信息

Sci Data. 2018 Feb 20;5:180011. doi: 10.1038/sdata.2018.11.

Abstract

Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.

摘要

中风是全球导致成年人残疾的主要原因,多达三分之二的患者会长期残疾。大规模的神经影像学研究表明,在康复后识别长期中风恢复的强大生物标志物(例如大脑结构的测量值)方面具有前景。然而,由于在准确的中风损伤分割方面存在障碍,分析大规模的康复相关数据集是有问题的。手动追踪的损伤目前是 T1 加权 MRI 上损伤分割的金标准,但这项工作非常耗费人力,且需要具备解剖学专业知识。虽然已经开发了算法来自动完成此过程,但结果通常准确性不高。采用机器学习技术的较新算法很有前景,但这些算法需要大型训练数据集来优化性能。在这里,我们介绍了 ATLAS(中风后损伤的解剖追踪),这是一个包含 304 个 T1 加权 MRI 的开源数据集,具有手动分割的损伤和元数据。这个大型的、多样化的数据集可用于训练和测试损伤分割算法,并为比较不同分割方法的性能提供了一个标准化的数据集。我们希望 ATLAS 版本 1.1 将成为评估和提高当前损伤分割方法准确性的有用资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe83/5819480/7ded09f9360f/sdata201811-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验