Suppr超能文献

界面质子门控引发的、具有阈值可调、脉冲速率依赖型的可塑性用于模式学习和记忆。

Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.

机构信息

School of Physical Science and Technology , Ningbo University , Ningbo 315211 , Zhejiang , People's Republic of China.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 12;12(6):7833-7839. doi: 10.1021/acsami.9b22369. Epub 2020 Jan 29.

Abstract

Recently, neuromorphic devices have been receiving increasing interest in the field of artificial intelligence (AI). Realization of fundamental synaptic plasticities on hard-ware devices would endow new intensions for neuromorphic devices. Spike-rate-dependent plasticity (SRDP) is one of the most important synaptic learning mechanisms in brain cognitive behaviors. It is thus interesting to mimic the SRDP behaviors on solid-state neuromorphic devices. In the present work, nanogranular phosphorus silicate glass (PSG)-based proton conductive electrolyte-gated oxide neuromorphic transistors have been proposed. The oxide neuromorphic transistors have good transistor performances and frequency-dependent synaptic plasticity behavior. Moreover, the neuromorphic transistor exhibits SRDP activities. Interestingly, by introducing priming synaptic stimuli, the modulation of threshold frequency value distinguishing synaptic potentiation from synaptic depression is realized for the first time on an electrolyte-gated neuromorphic transistor. Such a mechanism can be well understood with interfacial proton gating effects of the nanogranular PSG-based electrolyte. Furthermore, the effects of SRDP learning rules on pattern learning and memory behaviors have been conceptually demonstrated. The proposed neuromorphic transistors have potential applications in neuromorphic engineering.

摘要

最近,神经形态器件在人工智能(AI)领域受到越来越多的关注。在硬件设备上实现基本的突触可塑性将为神经形态器件赋予新的内涵。尖峰率依赖性可塑性(SRDP)是大脑认知行为中最重要的突触学习机制之一。因此,在固态神经形态器件上模拟 SRDP 行为很有趣。在本工作中,提出了基于纳米颗粒磷硅玻璃(PSG)的质子导电电解质门控氧化物神经形态晶体管。氧化物神经形态晶体管具有良好的晶体管性能和频率相关的突触可塑性行为。此外,神经形态晶体管表现出 SRDP 活动。有趣的是,通过引入启动突触刺激,首次在电解质门控神经形态晶体管上实现了区分突触增强和突触抑制的阈频值的调制。这种机制可以很好地用基于纳米颗粒 PSG 的电解质的界面质子门控效应来理解。此外,还概念性地证明了 SRDP 学习规则对模式学习和记忆行为的影响。所提出的神经形态晶体管在神经形态工程中有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验