Suppr超能文献

酵母生物杂种中的光驱动精细化学品生产。

Light-driven fine chemical production in yeast biohybrids.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Science. 2018 Nov 16;362(6416):813-816. doi: 10.1126/science.aat9777.

Abstract

Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered , a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.

摘要

无机-生物杂化系统具有成为可持续、高效和多功能的化学合成平台的潜力,它将半导体的光捕获特性与生物细胞的合成潜力结合在一起。我们开发了一种模块化的生物无机杂化平台,它由高效的光捕获磷化铟纳米粒子和经过基因工程改造的组成,是生物制造中的一种主力微生物。酵母从被照亮的纳米粒子中收集光生电子,并将其用于细胞溶质中氧化还原辅因子的再生。这一过程实现了生物合成和辅因子再生的解耦,促进了代谢物莽草酸的碳和能源高效生产,莽草酸是几种药物和精细化学品的常见前体。我们的工作为高效生物制造过程中生物杂化体的合理设计提供了一个平台,这些过程具有更高的复杂性和功能性。

相似文献

1
Light-driven fine chemical production in yeast biohybrids.
Science. 2018 Nov 16;362(6416):813-816. doi: 10.1126/science.aat9777.
5
Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
Biotechnol Bioeng. 2016 Dec;113(12):2676-2685. doi: 10.1002/bit.26037. Epub 2016 Jun 30.
6
Characterization and ultrafiltration of semiconductor indium phosphide (InP) wastewater for recycling.
Environ Technol. 2005 Jan;26(1):111-9. doi: 10.1080/09593332608618591.
7
Modular Homogeneous Chromophore-Catalyst Assemblies.
Acc Chem Res. 2016 May 17;49(5):835-43. doi: 10.1021/acs.accounts.5b00539. Epub 2016 Apr 22.
8
Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics.
Opt Lett. 2013 Nov 15;38(22):4656-8. doi: 10.1364/OL.38.004656.
9
Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites.
J Ind Microbiol Biotechnol. 2016 Nov;43(11):1611-1624. doi: 10.1007/s10295-016-1824-9. Epub 2016 Aug 31.
10
Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals.
ACS Synth Biol. 2015 Mar 20;4(3):332-41. doi: 10.1021/sb500243c. Epub 2014 Jul 2.

引用本文的文献

1
Novel energy utilization mechanisms of microorganisms in the hydrosphere.
Fundam Res. 2024 Feb 8;5(4):1584-1596. doi: 10.1016/j.fmre.2023.12.014. eCollection 2025 Jul.
2
Autonomous chemo-metabolic construction of anisotropic cell-in-shell nanobiohybrids in enzyme-powered cell microrobots.
Sci Adv. 2025 Jun 27;11(26):eadu5451. doi: 10.1126/sciadv.adu5451. Epub 2025 Jun 25.
3
A biocompatible Lossen rearrangement in Escherichia coli.
Nat Chem. 2025 Jul;17(7):1020-1026. doi: 10.1038/s41557-025-01845-5. Epub 2025 Jun 23.
4
Recent Progress in Designing Nanomaterial Biohybrids for Artificial Photosynthesis.
Nanomaterials (Basel). 2025 May 12;15(10):730. doi: 10.3390/nano15100730.
6
Engineering live cell surfaces with polyphenol-functionalized nanoarchitectures.
Chem Sci. 2025 Feb 11;16(9):3774-3787. doi: 10.1039/d4sc07198k. eCollection 2025 Feb 26.
7
Microbial engineering for monocyclic aromatic compounds production.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf003.
8
Natural biomolecules for cell-interface engineering.
Chem Sci. 2025 Jan 28;16(7):3019-3044. doi: 10.1039/d4sc08422e. eCollection 2025 Feb 12.

本文引用的文献

1
Strategies for microbial synthesis of high-value phytochemicals.
Nat Chem. 2018 Apr;10(4):395-404. doi: 10.1038/s41557-018-0013-z. Epub 2018 Mar 22.
2
A surface-display biohybrid approach to light-driven hydrogen production in air.
Sci Adv. 2018 Feb 21;4(2):eaap9253. doi: 10.1126/sciadv.aap9253. eCollection 2018 Feb.
3
Physical Biology of the Materials-Microorganism Interface.
J Am Chem Soc. 2018 Feb 14;140(6):1978-1985. doi: 10.1021/jacs.7b11135. Epub 2018 Feb 6.
4
Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems.
Acc Chem Res. 2017 Mar 21;50(3):476-481. doi: 10.1021/acs.accounts.6b00483.
5
Extracellular polymeric substances are transient media for microbial extracellular electron transfer.
Sci Adv. 2017 Jul 5;3(7):e1700623. doi: 10.1126/sciadv.1700623. eCollection 2017 Jul.
7
Ambient nitrogen reduction cycle using a hybrid inorganic-biological system.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6450-6455. doi: 10.1073/pnas.1706371114. Epub 2017 Jun 6.
8
Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3843-3848. doi: 10.1073/pnas.1619961114. Epub 2017 Mar 27.
9
Modular assembly of superstructures from polyphenol-functionalized building blocks.
Nat Nanotechnol. 2016 Dec;11(12):1105-1111. doi: 10.1038/nnano.2016.172. Epub 2016 Oct 10.
10
Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11750-11755. doi: 10.1073/pnas.1610554113. Epub 2016 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验