Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Science. 2018 Nov 16;362(6416):813-816. doi: 10.1126/science.aat9777.
Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered , a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.
无机-生物杂化系统具有成为可持续、高效和多功能的化学合成平台的潜力,它将半导体的光捕获特性与生物细胞的合成潜力结合在一起。我们开发了一种模块化的生物无机杂化平台,它由高效的光捕获磷化铟纳米粒子和经过基因工程改造的组成,是生物制造中的一种主力微生物。酵母从被照亮的纳米粒子中收集光生电子,并将其用于细胞溶质中氧化还原辅因子的再生。这一过程实现了生物合成和辅因子再生的解耦,促进了代谢物莽草酸的碳和能源高效生产,莽草酸是几种药物和精细化学品的常见前体。我们的工作为高效生物制造过程中生物杂化体的合理设计提供了一个平台,这些过程具有更高的复杂性和功能性。