Biomedical Engineering Department and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5281, USA.
Phys Rev E. 2019 Dec;100(6-1):062142. doi: 10.1103/PhysRevE.100.062142.
In this article, we develop a Bayesian approach to estimate parameters from time traces that originate from an overdamped Brownian particle in a harmonic potential, or Ornstein-Uhlenbeck process (OU). We show that least-square fitting the autocorrelation function, which is often the standard way of analyzing such data, is significantly underestimating the confidence intervals of the fitted parameters. Here, we develop a rigorous maximum likelihood theory that properly captures the underlying statistics. From the analytic solution, we found that there exists an optimal measurement spacing (Δt=0.7968τ) that maximizes the statistical accuracy of the estimate for the decay-time τ of the process for a fixed number of samples N, which plays a similar role than the Nyquist-Shannon theorem for the OU process. To support our claims, we simulated time series with subsequent application of least-square and our maximum likelihood method. Our results suggest that it is quite dangerous to apply least-squares to autocorrelation functions both in terms of systematic deviations from the true parameter values and an order-of-magnitude underestimation of confidence intervals. To see whether our findings apply to other methods where autocorrelation functions are typically fitted by least-squares, we explored the analysis of membrane fluctuations and fluorescence correlation spectroscopy. In both cases, least-square fits exhibit systematic deviations from the true parameter values and significantly underestimate their confidence intervals. This fact emphasizes the need for the development of proper maximum likelihood approaches for such methods. In summary, our results have strong implications for parameter estimation for processes that result in a single exponential decay in the autocorrelation function. Our analysis can directly be applied to single-component dynamic light scattering experiments or optical trap calibration experiments.
在本文中,我们开发了一种贝叶斯方法来估计来自于受阻尼布朗粒子在简谐势中的时间轨迹的参数,或者奥恩斯坦-乌伦贝克过程(OU)。我们表明,自相关函数的最小二乘拟合(这通常是分析此类数据的标准方法)严重低估了拟合参数的置信区间。在这里,我们开发了一个严格的最大似然理论,它可以正确地捕捉到基本的统计数据。从解析解中,我们发现存在一个最优的测量间隔(Δt=0.7968τ),它可以在固定数量的样本 N 下最大化过程衰减时间τ的估计的统计精度,这与 OU 过程的奈奎斯特-香农定理起着相似的作用。为了支持我们的主张,我们模拟了时间序列,然后应用最小二乘法和我们的最大似然法。我们的结果表明,对于通过最小二乘法拟合自相关函数的方法,无论是从真实参数值的系统偏差还是置信区间的数量级低估来看,应用最小二乘法都是非常危险的。为了确定我们的发现是否适用于其他通常通过最小二乘法拟合自相关函数的方法,我们探索了膜波动和荧光相关光谱的分析。在这两种情况下,最小二乘法拟合都表现出与真实参数值的系统偏差,并且大大低估了它们的置信区间。这一事实强调了为这些方法开发适当的最大似然方法的必要性。总之,我们的结果对导致自相关函数呈单指数衰减的过程的参数估计具有很强的意义。我们的分析可以直接应用于单组分动态光散射实验或光阱校准实验。