Suppr超能文献

潜 Ornstein-Uhlenbeck 模型在多元纵向分类反应的贝叶斯分析中的应用。

Latent Ornstein-Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses.

机构信息

I-BioStat, KU Leuven, Leuven, Belgium.

I-BioStat, Universiteit Hasselt, Hasselt, Belgium.

出版信息

Biometrics. 2021 Jun;77(2):689-701. doi: 10.1111/biom.13292. Epub 2020 Jun 4.

Abstract

We propose a Bayesian latent Ornstein-Uhlenbeck (OU) model to analyze unbalanced longitudinal data of binary and ordinal variables, which are manifestations of fewer continuous latent variables. We focus on the evolution of such latent variables when they continuously change over time. Existing approaches are limited to data collected at regular time intervals. Our proposal makes use of an OU process for the latent variables to overcome this limitation. We show that assuming real eigenvalues for the drift matrix of the OU process, as is frequently done in practice, can lead to biased estimates and/or misleading inference when the true process is oscillating. In contrast, our proposal allows for both real and complex eigenvalues. We illustrate our proposed model with a motivating dataset, containing patients with amyotrophic lateral sclerosis disease. We were interested in how bulbar, cervical, and lumbar functions evolve over time.

摘要

我们提出了一种贝叶斯潜在的 Ornstein-Uhlenbeck (OU) 模型,用于分析二进制和有序变量的不平衡纵向数据,这些数据是较少连续潜在变量的表现。我们关注的是这些潜在变量随时间连续变化时的演变。现有方法仅限于在固定时间间隔收集的数据。我们的建议利用 OU 过程对潜在变量进行建模,以克服这一限制。我们表明,在实践中经常假设 OU 过程的漂移矩阵具有实特征值,当真实过程发生振荡时,这可能导致有偏估计和/或误导性推断。相比之下,我们的建议允许实特征值和复特征值。我们使用一个有启发性的数据集来说明我们提出的模型,该数据集包含肌萎缩侧索硬化症患者的数据。我们感兴趣的是球部、颈部和腰部功能如何随时间演变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验