Suppr超能文献

转化与临床功能磁共振成像的当前挑战及未来方向

Current Challenges in Translational and Clinical fMRI and Future Directions.

作者信息

Specht Karsten

机构信息

Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.

Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway.

出版信息

Front Psychiatry. 2020 Jan 8;10:924. doi: 10.3389/fpsyt.2019.00924. eCollection 2019.

Abstract

Translational neuroscience is an important field that brings together clinical praxis with neuroscience methods. In this review article, the focus will be on functional neuroimaging (fMRI) and its applicability in clinical fMRI studies. In the light of the "replication crisis," three aspects will be critically discussed: First, the fMRI signal itself, second, current fMRI praxis, and, third, the next generation of analysis strategies. Current attempts such as resting-state fMRI, meta-analyses, and machine learning will be discussed with their advantages and potential pitfalls and disadvantages. One major concern is that the fMRI signal shows substantial within- and between-subject variability, which affects the reliability of both task-related, but in particularly resting-state fMRI studies. Furthermore, the lack of standardized acquisition and analysis methods hinders the further development of clinical relevant approaches. However, meta-analyses and machine-learning approaches may help to overcome current shortcomings in the methods by identifying new, and yet hidden relationships, and may help to build new models on disorder mechanisms. Furthermore, better control of parameters that may have an influence on the fMRI signal and that can easily be controlled for, like blood pressure, heart rate, diet, time of day, might improve reliability substantially.

摘要

转化神经科学是一个将临床实践与神经科学方法结合在一起的重要领域。在这篇综述文章中,重点将放在功能神经成像(fMRI)及其在临床fMRI研究中的适用性上。鉴于“复制危机”,将批判性地讨论三个方面:第一,fMRI信号本身;第二,当前的fMRI实践;第三,下一代分析策略。将讨论诸如静息态fMRI、荟萃分析和机器学习等当前尝试及其优点和潜在的陷阱与缺点。一个主要问题是fMRI信号在个体内部和个体之间显示出很大的变异性,这影响了与任务相关的fMRI研究的可靠性,尤其是静息态fMRI研究的可靠性。此外,缺乏标准化的采集和分析方法阻碍了临床相关方法的进一步发展。然而,荟萃分析和机器学习方法可能有助于通过识别新的、尚未被发现的关系来克服当前方法中的缺点,并可能有助于建立关于疾病机制的新模型。此外,更好地控制可能影响fMRI信号且易于控制的参数,如血压、心率、饮食、一天中的时间等,可能会显著提高可靠性。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

5
The history and future of resting-state functional magnetic resonance imaging.静息态功能磁共振成像的历史与未来
Nature. 2025 May;641(8065):1121-1131. doi: 10.1038/s41586-025-08953-9. Epub 2025 May 28.

本文引用的文献

2
Neuroanatomical Considerations in Preoperative Functional Brain Mapping.术前功能性脑图谱的神经解剖学考量
Top Magn Reson Imaging. 2019 Aug;28(4):213-224. doi: 10.1097/RMR.0000000000000213.
6
Why is Clinical fMRI in a Resting State?为什么静息状态下要进行临床功能磁共振成像?
Front Neurol. 2019 Apr 24;10:420. doi: 10.3389/fneur.2019.00420. eCollection 2019.
7
Sampling Rate Effects on Resting State fMRI Metrics.采样率对静息态功能磁共振成像指标的影响。
Front Neurosci. 2019 Apr 2;13:279. doi: 10.3389/fnins.2019.00279. eCollection 2019.
10
Generative models and abstractions for large-scale neuroanatomy datasets.大规模神经解剖数据集的生成模型和抽象
Curr Opin Neurobiol. 2019 Apr;55:112-120. doi: 10.1016/j.conb.2019.02.005. Epub 2019 Mar 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验