Suppr超能文献

多态性数据推断适应度效应分布和有益突变特征的方法(polyDFE)

polyDFE: Inferring the Distribution of Fitness Effects and Properties of Beneficial Mutations from Polymorphism Data.

机构信息

Bioinformatics Research Center, Aarhus University, Aarhus, Denmark.

出版信息

Methods Mol Biol. 2020;2090:125-146. doi: 10.1007/978-1-0716-0199-0_6.

Abstract

The possible evolutionary trajectories a population can follow is determined by the fitness effects of new mutations. Their relative frequencies are best specified through a distribution of fitness effects (DFE) that spans deleterious, neutral, and beneficial mutations. As such, the DFE is key to several aspects of the evolution of a population, and particularly the rate of adaptive molecular evolution (α). Inference of DFE from patterns of polymorphism and divergence has been a longstanding goal of evolutionary genetics.polyDFE provides a flexible statistical framework to estimate the DFE and α from site frequency spectrum (SFS) data. Several probability distributions can be fitted to the data to model the DFE. The method also jointly estimates a series of nuisance parameters that model the effect of unknown demography as well data imperfections, in particular possible errors in polarizing SNPs. This chapter is organized as a tutorial for polyDFE. We start by briefly reviewing the concept of DFE, α, and the principles underlying the method, and then provide an example using central chimpanzees data (Tataru et al., Genetics 207(3):1103-1119, 2017; Bataillon et al., Genome Biol Evol 7(4):1122-1132, 2015) to guide the user through the different steps of an analysis: formatting the data as input to polyDFE, fitting different models, obtaining estimates of parameters uncertainty and performing statistical tests, as well as model averaging procedures to obtain robust estimates of model parameters.

摘要

群体可能遵循的进化轨迹由新突变的适应度效应决定。它们的相对频率最好通过跨越有害、中性和有利突变的适应度效应分布(DFE)来指定。因此,DFE 是群体进化的几个方面的关键,特别是适应性分子进化(α)的速率。从多态性和分歧模式推断 DFE 一直是进化遗传学的一个长期目标。polyDFE 提供了一个灵活的统计框架,可以从位点频率谱(SFS)数据中估计 DFE 和 α。可以拟合几种概率分布来对 DFE 进行建模。该方法还联合估计了一系列混杂参数,这些参数可以模拟未知人口统计学的影响以及数据不完善的情况,特别是可能存在极化 SNP 的错误。本章是 polyDFE 的教程。我们首先简要回顾 DFE、α 的概念以及该方法的原理,然后使用黑猩猩中部数据(Tataru 等人,遗传学 207(3):1103-1119, 2017;Bataillon 等人,基因组生物学进化 7(4):1122-1132, 2015)提供一个示例,指导用户完成分析的不同步骤:将数据格式化作为输入到 polyDFE,拟合不同的模型,获得参数不确定性的估计值和执行统计检验,以及模型平均程序以获得模型参数的稳健估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验