Suppr超能文献

离子与电子混合传导聚噻吩薄膜中湿度控制的水分吸收与电导率

Humidity-Controlled Water Uptake and Conductivities in Ion and Electron Mixed Conducting Polythiophene Films.

作者信息

Wieland Matthias, Dingler Carsten, Merkle Rotraut, Maier Joachim, Ludwigs Sabine

机构信息

IPOC-Functional Polymers, Institute for Polymer Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany.

Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 5;12(5):6742-6751. doi: 10.1021/acsami.9b21181. Epub 2020 Jan 24.

Abstract

Mixed conducting polymer films are of great interest in applications where an interface between electronic and ionic charge transport is needed, e.g., in bioelectronics, electrochemical energy applications, and photovoltaic device interfaces. The role of water on charge transport is of high relevance not only for aqueous environments but also for devices that are manufactured at ambient conditions with varying relative humidities. In this contribution, we present our results on the influence of controlled humidity changes on the mixed conductivity and correlation to the concomitant water uptake in the films. Two sulfonate-bearing polythiophene systems are studied: a self-made conjugated polyelectrolyte, poly(6-(thiophen-3-yl)hexane-1-sulfonate)-sodium (PTS-Na), and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) with different ratios of PEDOT and the polyelectrolyte PSS. Our data give clear evidence of the similarities between the aforementioned polythiophene systems and pure ionic membranes such as Nafion used in fuel cells. As such, a phase separation between the hydrophobic electronically conducting polythiophene phase and the hydrophilic water-swellable ion-conducting phase is proposed. Changing the humidity from dry conditions up to ∼90% relative humidity results in extremely high water uptakes of more than 90 wt %, which corresponds to ∼13 water molecules per sulfonate unit at maximum water uptake. Conversely, the electronic conductivity is less sensitive to increasing humidity, which is due to percolation pathways. The ionic conductivity strongly increases from 10 S/cm at dry conditions to 10 S/cm at around 30 wt % water content and then levels off at maximum conductivities of 10-10 S/cm up to water contents of 90 wt %.

摘要

混合导电聚合物薄膜在需要电子和离子电荷传输界面的应用中具有极大的吸引力,例如在生物电子学、电化学能源应用以及光伏器件界面中。水对电荷传输的作用不仅与水性环境高度相关,而且对于在不同相对湿度的环境条件下制造的器件也至关重要。在本论文中,我们展示了关于可控湿度变化对混合电导率的影响以及与薄膜中伴随的水分吸收之间的相关性的研究结果。我们研究了两种含磺酸盐的聚噻吩体系:一种自制的共轭聚电解质,聚(6 - (噻吩 - 3 - 基)己烷 - 1 - 磺酸盐) - 钠(PTS - Na),以及具有不同PEDOT与聚电解质PSS比例的聚(3,4 - 乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT/PSS)。我们的数据清楚地证明了上述聚噻吩体系与燃料电池中使用的纯离子膜(如Nafion)之间的相似性。因此,我们提出在疏水性电子导电聚噻吩相和亲水性水可膨胀离子导电相之间存在相分离。将湿度从干燥条件改变到相对湿度约90%会导致超过90 wt%的极高水分吸收,这对应于最大水分吸收时每个磺酸盐单元约13个水分子。相反,电子电导率对湿度增加不太敏感,这是由于渗流路径的原因。离子电导率从干燥条件下的10 S/cm急剧增加到水含量约30 wt%时的10 S/cm,然后在高达90 wt%的水含量下达到10 - 10 S/cm的最大电导率并趋于平稳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验