Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
Int J Mol Sci. 2020 Jan 23;21(3):744. doi: 10.3390/ijms21030744.
The tight junction (TJ) and the adherens junction (AJ) bridge the paracellular cleft of epithelial and endothelial cells. In addition to their role as protective barriers against bacteria and their toxins they maintain ion homeostasis, cell polarity, and mechano-sensing. Their functional loss leads to pathological changes such as tissue inflammation, ion imbalance, and cancer. To better understand the consequences of such malfunctions, the junctional nanoarchitecture is of great importance since it remains so far largely unresolved, mainly because of major difficulties in dynamically imaging these structures at sufficient resolution and with molecular precision. The rapid development of super-resolution imaging techniques ranging from structured illumination microscopy (SIM), stimulated emission depletion (STED) microscopy, and single molecule localization microscopy (SMLM) has now enabled molecular imaging of biological specimens from cells to tissues with nanometer resolution. Here we summarize these techniques and their application to the dissection of the nanoscale molecular architecture of TJs and AJs. We propose that super-resolution imaging together with advances in genome engineering and functional analyses approaches will create a leap in our understanding of the composition, assembly, and function of TJs and AJs at the nanoscale and, thereby, enable a mechanistic understanding of their dysfunction in disease.
紧密连接 (TJ) 和黏着连接 (AJ) 连接上皮细胞和内皮细胞的细胞旁裂。除了作为防止细菌及其毒素的保护屏障外,它们还维持离子平衡、细胞极性和机械感应。它们的功能丧失会导致组织炎症、离子失衡和癌症等病理变化。为了更好地理解这种功能障碍的后果,连接的纳米结构非常重要,因为到目前为止,它在很大程度上仍未得到解决,主要是因为在足够的分辨率和分子精度下动态成像这些结构存在重大困难。从结构照明显微镜 (SIM)、受激发射损耗 (STED) 显微镜到单分子定位显微镜 (SMLM) 的超分辨率成像技术的快速发展,现在已经能够以纳米分辨率对从细胞到组织的生物样本进行分子成像。在这里,我们总结了这些技术及其在 TJ 和 AJ 纳米尺度分子结构剖析中的应用。我们提出,超分辨率成像与基因组工程和功能分析方法的进步相结合,将使我们对 TJ 和 AJ 的纳米尺度组成、组装和功能的理解产生飞跃,并因此使我们能够对其在疾病中的功能障碍有机制上的理解。