Suppr超能文献

机器人辅助手术中多种信息的减压椎板切除术的状态识别。

State recognition of decompressive laminectomy with multiple information in robot-assisted surgery.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen, 518055, China; Harbin Institute of Technology (Shenzhen), University Town of Shenzhen, Shenzhen, 518055, China.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen, 518055, China.

出版信息

Artif Intell Med. 2020 Jan;102:101763. doi: 10.1016/j.artmed.2019.101763. Epub 2019 Nov 16.

Abstract

The decompressive laminectomy is a common operation for treatment of lumbar spinal stenosis. The tools for grinding and drilling are used for fenestration and internal fixation, respectively. The state recognition is one of the main technologies in robot-assisted surgery, especially in tele-surgery, because surgeons have limited perception during remote-controlled robot-assisted surgery. The novelty of this paper is that a state recognition system is proposed for the robot-assisted tele-surgery. By combining the learning methods and traditional methods, the robot from the slave-end can think about the current operation state like a surgeon, and provide more information and decision suggestions to the master-end surgeon, which aids surgeons work safer in tele-surgery. For the fenestration, we propose an image-based state recognition method that consists a U-Net derived network, grayscale redistribution and dynamic receptive field assisting in controlling the grinding process to prevent the grinding-bit from crossing the inner edge of the lamina to damage the spinal nerves. For the internal fixation, we propose an audio and force-based state recognition method that consists signal features extraction methods, LSTM-based prediction and information fusion assisting in monitoring the drilling process to prevent the drilling-bit from crossing the outer edge of the vertebral pedicle to damage the spinal nerves. Several experiments are conducted to show the reliability of the proposed system in robot-assisted surgery.

摘要

减压椎板切除术是治疗腰椎管狭窄症的一种常见手术。磨钻和钻头分别用于开窗和内固定。状态识别是机器人辅助手术中的主要技术之一,特别是在远程手术中,因为外科医生在远程控制机器人辅助手术中感知有限。本文的新颖之处在于提出了一种用于机器人辅助远程手术的状态识别系统。通过结合学习方法和传统方法,从从机端的机器人可以像外科医生一样思考当前的手术状态,并为主机端的外科医生提供更多的信息和决策建议,帮助外科医生在远程手术中更安全地工作。对于开窗,我们提出了一种基于图像的状态识别方法,该方法由一个 U-Net 衍生的网络、灰度重新分配和动态感受野组成,有助于控制磨削过程,防止磨头越过椎板的内缘损伤脊神经。对于内固定,我们提出了一种基于音频和力的状态识别方法,该方法由信号特征提取方法、基于 LSTM 的预测和信息融合组成,有助于监测钻孔过程,防止钻头越过椎弓根的外缘损伤脊神经。进行了多项实验以证明所提出的系统在机器人辅助手术中的可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验