Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States.
Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States.
Acta Biomater. 2020 Mar 15;105:68-77. doi: 10.1016/j.actbio.2020.01.034. Epub 2020 Jan 23.
Mesenchymal stem cells (MSCs) hold great promise for vascular smooth muscle regeneration. However, most studies have mainly relied on extended supplementation of sophisticated biochemical regimen to drive MSC differentiation towards vascular smooth muscle cells (vSMCs). Herein we demonstrate a concomitant method that exploits the advantages of biomimetic matrix stiffness and tethered transforming growth factor β1 (TGF-β1) to guide vSMC commitment from human MSCs. Our designed poly(ethylene glycol) hydrogels, presenting a biomimetic stiffness and tethered TGF-β1, provide an instructive environment to potently upregulate smooth muscle marker expression in vitro and in vivo. Importantly, it significantly enhances the functional contractility of vSMCs derived from MSCs within 3 days. Interestingly, compared to non-tethered one, tethered TGF-β1 enhanced the potency of vSMC commitment on hydrogels. We provide compelling evidence that combining stiffness and tethered TGF-β1 on poly(ethylene glycol) hydrogels can be a promising approach to drastically enhance maturation and function of vSMCs from stem cell differentiation in vitro and in vivo. STATEMENT OF SIGNIFICANCE: A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.
间充质干细胞(MSCs)在血管平滑肌再生方面具有巨大的潜力。然而,大多数研究主要依赖于复杂的生化方案的扩展补充,以促使 MSC 向血管平滑肌细胞(vSMCs)分化。在这里,我们展示了一种同时利用仿生基质硬度和固定转化生长因子 β1(TGF-β1)的方法,从人 MSC 中指导 vSMC 分化。我们设计的聚乙二醇水凝胶,具有仿生硬度和固定的 TGF-β1,为体外和体内强有力地上调平滑肌标志物的表达提供了一个指导环境。重要的是,它在 3 天内显著增强了 MSC 来源的 vSMC 的功能收缩性。有趣的是,与非固定化 TGF-β1 相比,固定化 TGF-β1 增强了水凝胶上 vSMC 分化的效力。我们提供了令人信服的证据,表明在聚乙二醇水凝胶上结合硬度和固定化 TGF-β1 可以成为一种很有前途的方法,可在体外和体内从干细胞分化中显著增强 vSMC 的成熟和功能。
从干细胞分化快速、可靠、安全地再生血管平滑肌细胞(vSMCs)有望应用于血管组织工程和再生医学,但仍然具有挑战性。在这里,设计了一种光点击水凝胶平台来模拟血管组织的硬度和适当的转化生长因子 β1(TGF-β1)呈现,以指导间充质干细胞(MSCs)向 vSMC 分化。我们证明,这种同时的方法在短短 3 天内大大增强了 MSC 体外和体内成熟、功能 vSMC 的再生。这项工作不仅具有重要的基础科学意义,揭示了理化因素及其呈现方式如何指导干细胞分化,而且还解决了在短时间内再生高功能 vSMCs 的长期难题。