Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States.
ACS Appl Bio Mater. 2021 Jan 18;4(1):545-558. doi: 10.1021/acsabm.0c01114. Epub 2020 Dec 24.
The bypass graft is the mainstream of surgical intervention to treat vascular diseases. Ideal bypass materials, yet to be developed, require mechanical properties, availability, clinically feasible manufacturing logistics, and bioactivities with precise physicochemical cues defined to guide cell activities for arterial regeneration. Such needs instigated our fabrication of vascular grafts, which consist of coaxial, nanostructured fibers exhibiting a polycaprolactone (PCL) core and a photoclickable, 4-arm thiolated polyethylene glycol-norbornene (PEG-NB) sheath. The graft strength and bioactivity were modulated by the PCL concentration and the peptides (RGD, transforming growth factor -1 or TGF-1) conjugated to thiol-ene of PEG-NB, respectively. Structural, physical, and mechanical characterizations demonstrated that the fibrous grafts mimicked the key features of the native extracellular matrix, including a crosslinked fiber network for structural stability, viscoelasticity emulating arteries, hydration property, and high porosity for cell infiltration. Meanwhile, these grafts displayed strength and toughness exceeding or meeting surgical criteria. Furthermore, the grafts with higher PCL concentration (3 vs 1.8%) showed thicker fibers, lower porosity and pore size, and increased elastic and storage moduli. Graft bioactivity was determined by the mesenchymal stem cell (MSC) behaviors on the grafts and arterial regeneration using interposition grafting. Results showed that the cell adhesion and proliferation increased with the RGD density (25 vs 5 mM). After 1 week implantation, all peptide-functionalized PCL/PEG-NB grafts with or without MSC preseeding, as opposed to PCL grafts, showed expeditious endothelial lining, abundant vascular cell infiltration, and matrix production. Compared to RGD grafts, RGD/TGF-1 grafts enhanced MSC differentiation into smooth muscle cells and developed thicker smooth muscle cell layers . Overall, the versatile porous vascular grafts offer superior properties and tunability for future translation.
旁路移植是治疗血管疾病的主流手术干预方法。理想的旁路移植材料还需要具备机械性能、可用性、临床可行的制造物流以及具有精确物理化学线索的生物活性,以指导细胞活动促进动脉再生。这些需求促使我们制造了一种血管移植物,它由同轴的纳米结构化纤维组成,具有聚己内酯 (PCL) 核和光点击性的 4 臂硫醇封端聚乙二醇-降冰片烯 (PEG-NB) 鞘。通过改变 PCL 浓度和与 PEG-NB 中的硫醇-烯键共轭的肽(RGD、转化生长因子-β1 或 TGF-β1),可以调节移植物的强度和生物活性。结构、物理和机械特性表明,纤维移植物模拟了天然细胞外基质的关键特征,包括交联纤维网络提供结构稳定性、模仿动脉的粘弹性、水合特性和高孔隙率以利于细胞浸润。同时,这些移植物的强度和韧性超过或符合手术标准。此外,具有较高 PCL 浓度(3%与 1.8%)的移植物显示出更厚的纤维、更低的孔隙率和孔径以及增加的弹性和储能模量。通过间置移植,用间充质干细胞(MSC)在移植物上的行为和动脉再生来确定移植物的生物活性。结果表明,随着 RGD 密度(25 与 5 mM)的增加,细胞黏附和增殖增加。植入 1 周后,所有肽功能化的 PCL/PEG-NB 移植物(无论是否预先接种 MSC)与 PCL 移植物相比,都表现出快速内皮衬里、丰富的血管细胞浸润和基质生成。与 RGD 移植物相比,RGD/TGF-β1 移植物增强了 MSC 向平滑肌细胞的分化,并形成了更厚的平滑肌细胞层。总的来说,这种多功能多孔血管移植物为未来的转化提供了优越的性能和可调节性。