Suppr超能文献

帕金森病运动状态量化的多运动传感器指数。

A multiple motion sensors index for motor state quantification in Parkinson's disease.

机构信息

Department of Computer Engineering, Dalarna University, Falun, Sweden.

Department of Pharmacology at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.

出版信息

Comput Methods Programs Biomed. 2020 Jun;189:105309. doi: 10.1016/j.cmpb.2019.105309. Epub 2020 Jan 3.

Abstract

AIM

To construct a Treatment Response Index from Multiple Sensors (TRIMS) for quantification of motor state in patients with Parkinson's disease (PD) during a single levodopa dose. Another aim was to compare TRIMS to sensor indexes derived from individual motor tasks.

METHOD

Nineteen PD patients performed three motor tests including leg agility, pronation-supination movement of hands, and walking in a clinic while wearing inertial measurement unit sensors on their wrists and ankles. They performed the tests repeatedly before and after taking 150% of their individual oral levodopa-carbidopa equivalent morning dose.Three neurologists blinded to treatment status, viewed patients' videos and rated their motor symptoms, dyskinesia, overall motor state based on selected items of Unified PD Rating Scale (UPDRS) part III, Dyskinesia scale, and Treatment Response Scale (TRS). To build TRIMS, out of initially 178 extracted features from upper- and lower-limbs data, 39 features were selected by stepwise regression method and were used as input to support vector machines to be mapped to mean reference TRS scores using 10-fold cross-validation method. Test-retest reliability, responsiveness to medication, and correlation to TRS as well as other UPDRS items were evaluated for TRIMS.

RESULTS

The correlation of TRIMS with TRS was 0.93. TRIMS had good test-retest reliability (ICC = 0.83). Responsiveness of the TRIMS to medication was good compared to TRS indicating its power in capturing the treatment effects. TRIMS was highly correlated to dyskinesia (R = 0.85), bradykinesia (R = 0.84) and gait (R = 0.79) UPDRS items. Correlation of sensor index from the upper-limb to TRS was 0.89.

CONCLUSION

Using the fusion of upper- and lower-limbs sensor data to construct TRIMS provided accurate PD motor states estimation and responsive to treatment. In addition, quantification of upper-limb sensor data during walking test provided strong results.

摘要

目的

构建一个用于量化帕金森病(PD)患者单次左旋多巴剂量下运动状态的多传感器治疗反应指数(TRIMS)。另一个目的是将 TRIMS 与来自单个运动任务的传感器指数进行比较。

方法

19 名 PD 患者在诊所佩戴手腕和脚踝惯性测量单元传感器时,分别进行腿部敏捷性、手部旋前-旋后运动和行走三项运动测试。他们在服用个人口服左旋多巴-卡比多巴等效剂量的 150%之前和之后多次重复进行测试。三位对治疗状况不知情的神经科医生观看了患者的视频,并根据统一帕金森病评定量表(UPDRS)第三部分、运动障碍量表和治疗反应量表(TRS)的选定项目对他们的运动症状、运动障碍、整体运动状态进行评分。为了构建 TRIMS,从上下肢数据中最初提取的 178 个特征中,通过逐步回归方法选择了 39 个特征,并将其用作支持向量机的输入,通过 10 折交叉验证方法映射到平均参考 TRS 分数。对 TRIMS 进行了测试-再测试可靠性、对药物的反应性以及与 TRS 以及其他 UPDRS 项目的相关性评估。

结果

TRIMS 与 TRS 的相关性为 0.93。TRIMS 具有良好的测试-再测试可靠性(ICC=0.83)。与 TRS 相比,TRIMS 对药物的反应性较好,表明其在捕捉治疗效果方面的能力。TRIMS 与运动障碍(R=0.85)、运动迟缓(R=0.84)和步态(R=0.79)UPDRS 项目高度相关。上肢传感器指数与 TRS 的相关性为 0.89。

结论

使用上下肢传感器数据融合构建 TRIMS 可提供准确的 PD 运动状态估计,并对治疗有反应。此外,行走测试中上肢传感器数据的量化提供了强有力的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验