Suppr超能文献

维持铁稳态是溶酶体酸性对于细胞增殖的关键作用。

Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation.

机构信息

Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, 1300 York Avenue, New York, NY 10065, USA.

Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

出版信息

Mol Cell. 2020 Feb 6;77(3):645-655.e7. doi: 10.1016/j.molcel.2020.01.003. Epub 2020 Jan 23.

Abstract

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.

摘要

溶酶体是一种具有多种功能的酸性细胞器,在大分子消化、营养感应和信号转导中发挥作用。然而,细胞为什么需要酸性溶酶体来增殖,以及在溶酶体功能障碍下哪些营养物质变得有限,这些都不清楚。为了解决这个问题,我们进行了基于 CRISPR-Cas9 的基因敲除筛选,并发现胆固醇生物合成和铁摄取是溶酶体 pH 改变时必需的代谢途径。虽然胆固醇合成只是必需的,但在溶酶体功能障碍下,铁既是必需的,也是细胞增殖所必需的。值得注意的是,铁补充剂在药物和基因介导的溶酶体功能障碍下都能恢复细胞增殖。这种挽救与通常与溶酶体 pH 升高相关的代谢或信号变化无关,将溶酶体功能与细胞增殖解耦。最后,我们的实验表明,由于铁的耗竭,溶酶体功能障碍会显著改变线粒体代谢和低氧诱导因子 (HIF) 信号转导。总之,这些发现确定了铁稳态是溶酶体酸性对细胞增殖的关键功能。

相似文献

5
Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.线粒体呼吸链缺陷抑制溶酶体水解。
Autophagy. 2019 Sep;15(9):1572-1591. doi: 10.1080/15548627.2019.1586256. Epub 2019 Mar 27.
7
Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration.线粒体-溶酶体相互作用:从生理到神经退行性变
Trends Mol Med. 2020 Jan;26(1):71-88. doi: 10.1016/j.molmed.2019.10.009. Epub 2019 Nov 29.

引用本文的文献

2
Endocytosis is essential for cysteine-deprivation-induced ferroptosis.内吞作用对于半胱氨酸剥夺诱导的铁死亡至关重要。
Mol Cell. 2025 Sep 4;85(17):3333-3342.e4. doi: 10.1016/j.molcel.2025.08.006. Epub 2025 Aug 25.
8
Key Mechanisms in Lysosome Stability, Degradation and Repair.溶酶体稳定性、降解及修复的关键机制
Mol Cell Biol. 2025;45(5):212-224. doi: 10.1080/10985549.2025.2494762. Epub 2025 May 9.

本文引用的文献

6
Lysosomal storage diseases.溶酶体贮积症。
Nat Rev Dis Primers. 2018 Oct 1;4(1):27. doi: 10.1038/s41572-018-0025-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验