Suppr超能文献

DPVis:用于疾病进展路径的隐马尔可夫模型可视化分析

DPVis: Visual Analytics With Hidden Markov Models for Disease Progression Pathways.

作者信息

Kwon Bum Chul, Anand Vibha, Severson Kristen A, Ghosh Soumya, Sun Zhaonan, Frohnert Brigitte I, Lundgren Markus, Ng Kenney

出版信息

IEEE Trans Vis Comput Graph. 2021 Sep;27(9):3685-3700. doi: 10.1109/TVCG.2020.2985689. Epub 2021 Jul 29.

Abstract

Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this article, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.

摘要

临床研究人员使用疾病进展模型来了解患者状况,并从纵向健康记录中刻画进展模式。疾病进展建模的一种方法是使用少量状态来描述患者状况,这些状态代表一组观察指标上的独特分布。隐马尔可夫模型(HMM)及其变体是一类既能发现这些状态又能对患者健康状态进行推断的模型。尽管使用这些算法来发现有趣模式有诸多优势,但医学专家仍难以解释模型输出、理解复杂的建模参数并从临床角度理解这些模式。为解决这些问题,我们与临床科学家、统计学家和可视化专家进行了一项设计研究,目标是研究慢性病(即1型糖尿病(T1D)、亨廷顿舞蹈症、帕金森病和慢性阻塞性肺疾病(COPD))的疾病进展路径。结果,我们引入了DPVis,它将HMM的模型参数和结果无缝集成到可解释且交互式的可视化中。在本文中,我们证明DPVis在评估疾病进展模型、直观总结疾病状态、交互式探索疾病进展模式以及构建、分析和比较临床相关患者亚组方面是成功的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验