School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong, 529020, China.
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
Adv Mater. 2020 Mar;32(10):e1907495. doi: 10.1002/adma.201907495. Epub 2020 Jan 27.
Due to the intrinsic properties of fabrics, fabric-based wearable systems have certain advantages over elastomeric material-based stretchable electronics. Here, a method to produce highly stretchable, conductive, washable, and solderable fibers that consist of elastic polyurethane (PU) fibers and conductive Cu fibers, which are used as interconnects for wearable electronics, is reported. The 3D helical shape results from stress relaxation of the prestretched PU fiber and the plasticity of the Cu fiber, which provides a predictable way to manipulate the morphology of the 3D fibers. The present fibers have superior mechanical and electrical properties to many other conductive fibers fabricated through different approaches. The 3D helical fibers can be readily integrated with fabrics and other functional components to build fabric-based wearable systems.
由于织物的固有特性,基于织物的可穿戴系统相对于基于弹性体材料的可拉伸电子产品具有一定的优势。在这里,报道了一种生产高拉伸、导电、可清洗和可焊接纤维的方法,这些纤维由弹性聚氨酯(PU)纤维和导电 Cu 纤维组成,可用作可穿戴电子产品的互连。3D 螺旋形状是由预拉伸的 PU 纤维的应力松弛和 Cu 纤维的塑性产生的,这为控制 3D 纤维的形态提供了一种可预测的方法。与通过不同方法制造的许多其他导电纤维相比,目前的纤维具有更好的机械和电气性能。3D 螺旋纤维可以很容易地与织物和其他功能组件集成,以构建基于织物的可穿戴系统。