Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2020 Mar;32(10):e1907336. doi: 10.1002/adma.201907336. Epub 2020 Jan 27.
Flexible biocompatible mechanical energy harvesters are drawing increasing interest because of their high energy-harvesting efficiency for powering wearable/implantable devices. Here, a type of "self-matched" tribo-piezoelectric nanogenerators composed of genetically engineered recombinant spider silk protein and piezoelectric poly(vinylidene fluoride) (PVDF)-decorated poly(ethylene terephthalate) (PET) layers is reported. The PET layer serves as a shared structure and electrification layer for both piezoelectric and triboelectric nanogenerators. Importantly, the PVDF generates a strong piezo-potential that modifies the surface potential of the PET layer to match the electron-transfer direction of the spider silk during triboelectrification. A "vapor-induced phase-separation" process is developed to enhance the piezoelectric performance in a facile and "green" roll-to-roll manufacturing fashion. The devices show exceptional output performance and energy transformation efficiency among currently existing energy harvesters of similar sizes and exhibit the potential for large-scale fabrication and various implantable/wearable applications.
柔性生物相容性机械能收集器因其在为可穿戴/植入式设备供电方面具有较高的能量收集效率而引起了越来越多的关注。在这里,报道了一种由基因工程重组蜘蛛丝蛋白和压电聚(偏二氟乙烯)(PVDF)修饰的聚对苯二甲酸乙二醇酯(PET)层组成的“自匹配”摩擦-压电纳米发电机。PET 层作为压电和摩擦电纳米发电机的共享结构和电层。重要的是,PVDF 会产生很强的压电电势,从而改变 PET 层的表面电势,以匹配摩擦带电过程中蜘蛛丝的电子转移方向。开发了一种“蒸汽诱导相分离”工艺,以简单且“绿色”的卷对卷制造方式来提高压电性能。与类似尺寸的现有能量收集器相比,这些器件具有出色的输出性能和能量转换效率,并且具有大规模制造和各种可植入/可穿戴应用的潜力。