Elgaher Walid A M, Hamed Mostafa M, Baumann Sascha, Herrmann Jennifer, Siebenbürger Lorenz, Krull Jana, Cirnski Katarina, Kirschning Andreas, Brönstrup Mark, Müller Rolf, Hartmann Rolf W
Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
Chemistry. 2020 Jun 5;26(32):7219-7225. doi: 10.1002/chem.202000117. Epub 2020 Apr 28.
Lack of new antibiotics and increasing antimicrobial resistance are among the main concerns of healthcare communities nowadays, and these concerns necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids-a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe 1) a concise total synthesis of cystobactamid 507, 2) the identification of the bioactive conformation using noncovalently bonded rigid analogues, and 3) the first structure-activity relationship (SAR) study for cystobactamid 507 leading to new analogues with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor-groove binding as part of the drug-target interaction without showing significant intercalation. By designing a new analogue of cystobactamid 919-2, we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.
缺乏新型抗生素以及日益增加的抗菌耐药性是当今医疗界主要关注的问题之一,而这些问题使得寻找新型抗菌剂成为必要。最近,我们发现了囊杆菌酰胺类化合物——一类具有广谱抗菌活性的新型天然抗生素。在这项工作中,我们描述了:1) 囊杆菌酰胺507的简洁全合成;2) 使用非共价键连接的刚性类似物确定生物活性构象;3) 首次对囊杆菌酰胺507进行构效关系(SAR)研究,从而得到具有高代谢稳定性、卓越的拓扑异构酶IIA抑制活性、抗菌活性且重要的是对耐药因子AlbD具有稳定性的新类似物。对作用模式的更深入研究表明,囊杆菌酰胺类化合物通过与DNA小沟结合作为药物 - 靶点相互作用的一部分,而不表现出明显的嵌入作用。通过设计囊杆菌酰胺919 - 2的新类似物,我们最终证明这些发现可以进一步用于获得更有效的针对革兰氏阴性菌的六肽。