Droppelmann Guillermo, Rodríguez Constanza, Jorquera Carlos, Feijoo Felipe
Research Center on Medicine, Exercise, Sport and Health, MEDS Clinic, Santiago, RM, Chile.
Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Murcia, Spain.
EFORT Open Rev. 2024 Apr 4;9(4):241-251. doi: 10.1530/EOR-23-0174.
The integration of artificial intelligence (AI) in radiology has revolutionized diagnostics, optimizing precision and decision-making. Specifically in musculoskeletal imaging, AI tools can improve accuracy for upper extremity pathologies. This study aimed to assess the diagnostic performance of AI models in detecting musculoskeletal pathologies of the upper extremity using different imaging modalities.
A meta-analysis was conducted, involving searches on MEDLINE/PubMed, SCOPUS, Cochrane Library, Lilacs, and SciELO. The quality of the studies was assessed using the QUADAS-2 tool. Diagnostic accuracy measures including sensitivity, specificity, diagnostic odds ratio (DOR), positive and negative likelihood ratios (PLR, NLR), area under the curve (AUC), and summary receiver operating characteristic were pooled using a random-effects model. Heterogeneity and subgroup analyses were also included. All statistical analyses and plots were performed using the R software package.
Thirteen models from ten articles were analyzed. The sensitivity and specificity of the AI models to detect musculoskeletal conditions in the upper extremity were 0.926 (95% CI: 0.900; 0.945) and 0.908 (95% CI: 0.810; 0.958). The PLR, NLR, lnDOR, and the AUC estimates were found to be 19.18 (95% CI: 8.90; 29.34), 0.11 (95% CI: 0.18; 0.46), 4.62 (95% CI: 4.02; 5.22) with a (P < 0.001), and 95%, respectively.
The AI models exhibited strong univariate and bivariate performance in detecting both positive and negative cases within the analyzed dataset of musculoskeletal pathologies in the upper extremity.
人工智能(AI)在放射学中的整合彻底改变了诊断方式,优化了诊断精度和决策过程。特别是在肌肉骨骼成像方面,人工智能工具可以提高上肢疾病的诊断准确性。本研究旨在评估人工智能模型在使用不同成像方式检测上肢肌肉骨骼疾病时的诊断性能。
进行了一项荟萃分析,检索了MEDLINE/PubMed、SCOPUS、Cochrane图书馆、Lilacs和SciELO。使用QUADAS-2工具评估研究质量。使用随机效应模型汇总诊断准确性指标,包括敏感性、特异性、诊断比值比(DOR)、阳性和阴性似然比(PLR、NLR)、曲线下面积(AUC)和汇总受试者工作特征曲线。还进行了异质性和亚组分析。所有统计分析和绘图均使用R软件包进行。
分析了来自十篇文章的十三个模型。人工智能模型检测上肢肌肉骨骼疾病的敏感性和特异性分别为0.926(95%CI:0.900;0.945)和0.908(95%CI:0.810;0.958)。发现PLR、NLR、lnDOR和AUC估计值分别为19.18(95%CI:8.90;29.34)、0.11(95%CI:0.18;0.46)、4.62(95%CI:4.02;5.22),P<0.001,以及95%。
在分析的上肢肌肉骨骼疾病数据集中,人工智能模型在检测阳性和阴性病例方面均表现出强大的单变量和双变量性能。