Department of Radiology, Weill Cornell Medical College, New York, NY, 10021, USA.
School of Engineering, Lebanese International University, Beirut, Lebanon.
Med Phys. 2020 Apr;47(4):1949-1957. doi: 10.1002/mp.14046. Epub 2020 Feb 19.
There is a growing interest in extending the axial fields-of-view (AFOV) of PET scanners. One major limitation for the widespread clinical adoption of such systems is the multifold increase in the associated material costs. In this study, we propose a cost-effective solution to extend the PET AFOV using a sparse detector rings configuration. The corresponding physical performance was validated using Monte Carlo simulations.
Monte Carlo model of the Siemens Biograph mCT PET/CT, with a 21.8 cm AFOV and a set of compact rings of LSO crystals was developed as a gold standard. The mCT configuration was then modified by interleaving the LSO crystals in the axial direction within each detector block with 4 mm physical gaps (equivalent to the LSO crystal axial dimension) thus extending the AFOV to 43.6 cm (Ex-mCT). The physical performances of the two MC models were assessed and then compared using NEMA NU 2-2007 standards.
Ex-mCT showed <0.2 mm difference in transaxial spatial resolution, and, 0.8 mm and 0.3 mm deterioration in axial spatial resolution, compared to the mCT, at 1 and 10 cm off-center of the transaxial field-of-view respectively. The system sensitivities for the mCT and Ex-mCT models were 9.4 ± 0.2 and 10.75 ± 0.2 cps/kBq respectively. The higher sensitivity of Ex-mCT was due to four additional detector rings required to double the mCT AFOV. PET images of the NEMA Image Quality (IQ) phantom showed no artifacts due to detector rings sparsity, and all spheres were visible in both configurations. Ex-mCT achieved percent contrast recoveries within 5.6% of those of the mCT for all spheres and a maximum of 36% higher background variability at the center of the AFOV. The Ex-mCT, however, showed a more uniform noise distribution over an axial range of almost twice the length of the mCT AFOV.
Using the proposed sparse detector-ring configuration, the AFOV of current generation PET systems can be doubled while maintaining the original number and volume of detector crystal elements, and without jeopardizing the system's overall physical performance. Despite an increase in the noise level, the Ex-mCT exhibited an improved noise uniformity.
人们对扩展 PET 扫描仪的轴向视野(AFOV)越来越感兴趣。这种系统广泛应用于临床的主要限制之一是相关材料成本增加了数倍。在这项研究中,我们提出了一种使用稀疏探测器环配置来扩展 PET AFOV 的经济高效解决方案。使用蒙特卡罗模拟验证了相应的物理性能。
我们开发了西门子 Biograph mCT PET/CT 的蒙特卡罗模型,该模型的轴向视野为 21.8 cm,并配备了一组紧凑的 LSO 晶体环。然后,通过在每个探测器块的轴向方向上交错 LSO 晶体,在轴向方向上留出 4mm 的物理间隙(相当于 LSO 晶体的轴向尺寸),从而将 AFOV 扩展到 43.6 cm(Ex-mCT),对 mCT 配置进行了修改。使用 NEMA NU 2-2007 标准评估了这两个 MC 模型的物理性能,并对其进行了比较。
与 mCT 相比,Ex-mCT 在轴向空间分辨率上的差异小于 0.2mm,在横向视野的 1 和 10cm 离轴处,轴向空间分辨率分别恶化了 0.8mm 和 0.3mm。mCT 和 Ex-mCT 模型的系统灵敏度分别为 9.4±0.2 和 10.75±0.2 cps/kBq。Ex-mCT 的灵敏度更高,因为需要四个额外的探测器环来将 mCT 的 AFOV 加倍。NEMA 图像质量(IQ)体模的 PET 图像没有由于探测器环稀疏而出现伪影,并且两个配置中都可以看到所有球体。Ex-mCT 实现了所有球体的对比恢复百分比在 mCT 的 5.6%以内,并且在 AFOV 中心的背景变化最大可提高 36%。然而,Ex-mCT 在轴向范围内显示出更均匀的噪声分布,该轴向范围几乎是 mCT AFOV 的两倍长。
使用建议的稀疏探测器环配置,在不影响系统整体物理性能的情况下,可以将当前一代 PET 系统的 AFOV 加倍,同时保持原始探测器晶体元素的数量和体积。尽管噪声水平增加,但 Ex-mCT 表现出更好的噪声均匀性。