Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary.
Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Biochem Pharmacol. 2020 Apr;174:113826. doi: 10.1016/j.bcp.2020.113826. Epub 2020 Jan 25.
Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8. Here, we investigated the effect of VAs on TRPM3, a less characterized member of the thermosensitive TRP channels playing a central role in noxious heat sensation.
We investigated the effect of VAs on the activity of recombinant and native TRPM3, by monitoring changes in the intracellular Ca concentration and measuring TRPM3-mediated transmembrane currents.
All the investigated VAs (chloroform, halothane, isoflurane, sevoflurane) inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca signals and transmembrane currents in a concentration dependent way in HEK293T cells overexpressing recombinant TRPM3. Among the tested VAs, halothane was the most potent blocker (IC = 0.52 ± 0.05 mM). We also investigated the effect of VAs on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While VAs activated certain sensory neurons independently of TRPM3, they strongly and reversibly inhibited the agonist-induced TRPM3 activity.
These data provide a better insight into the molecular mechanism beyond the analgesic effect of VAs and propose novel strategies to attenuate TRPM3 dependent nociception.
挥发性麻醉剂(VAs)是最广泛用于诱导手术干预时可逆性意识丧失和维持全身麻醉的化合物。尽管其作用机制尚未完全了解,但人们普遍认为,VAs 通过调制神经元膜中的离子通道,包括 2 孔域 K + 通道、GABA 和 NMDA 受体,来抑制中枢神经系统功能。最近的研究还报道了它们对表达在外周神经系统中的伤害性和热敏性 TRP 通道(包括 TRPV1、TRPA1 和 TRPM8)的作用。在这里,我们研究了 VAs 对 TRPM3 的作用,TRPM3 是热敏性 TRP 通道中较少被描述的成员,在有害热感觉中起着核心作用。
我们通过监测细胞内 Ca 浓度的变化和测量 TRPM3 介导的跨膜电流,研究了 VAs 对重组和天然 TRPM3 活性的影响。
所有研究的 VAs(氯仿、氟烷、异氟烷、七氟烷)以浓度依赖的方式抑制了在过表达重组 TRPM3 的 HEK293T 细胞中激动剂诱导的(孕烯醇酮硫酸盐、CIM0216)和热激活的 Ca 信号和跨膜电流。在所测试的 VAs 中,氟烷是最有效的阻断剂(IC 50 = 0.52 ± 0.05 mM)。我们还研究了 VAs 对背根神经节感觉神经元中表达的天然 TRPM3 通道的影响。虽然 VAs 独立于 TRPM3 激活某些感觉神经元,但它们强烈且可逆地抑制了激动剂诱导的 TRPM3 活性。
这些数据提供了对 VAs 镇痛作用之外的分子机制的更深入了解,并提出了减轻 TRPM3 依赖性疼痛的新策略。