Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, United States.
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, United States.
Neurosci Res. 2020 Mar;152:59-65. doi: 10.1016/j.neures.2020.01.005. Epub 2020 Jan 24.
One of the most important goals in neuroscience and neuroengineering is noninvasive deep brain stimulation and imaging. Recently, lanthanide-doped upconversion nanoparticles (UCNPs) have been developed as a new class of optical actuators and labels to allow for the use of near-infrared light (NIR) to optogenetically stimulate and image neurons nestled in deep brain regions. Besides the high penetration depth of NIR excitation, UCNPs show advantages in neuronal imaging and stimulation due to their large anti-Stokes shifts, sharp emission bandwidths, low autofluorescence background, high resistance to photobleaching, high temporal resolution in photon conversion as well as high biocompatibility for in vivo applications. UCNP technology paves the way for minimally invasive deep brain stimulation and imaging with the potential for remote therapy. This review focuses on the recent development of UCNP applications in neuroscience, including UCNP-mediated NIR upconversion optogenetics as well as UCNP-assisted retrograde neuronal tracing and imaging.
神经科学和神经工程的最重要目标之一是非侵入性的深部脑刺激和成像。最近,镧系掺杂上转换纳米粒子(UCNPs)已被开发为一类新的光学驱动器和标记物,以允许使用近红外光(NIR)对位于深部脑区的神经元进行光遗传学刺激和成像。除了 NIR 激发的高穿透深度外,UCNPs 在神经元成像和刺激方面具有优势,因为它们具有大的反斯托克斯位移、窄的发射带宽、低的自发荧光背景、对光漂白的高抵抗力、光子转换的高时间分辨率以及对体内应用的高生物相容性。UCNP 技术为微创深部脑刺激和成像铺平了道路,具有远程治疗的潜力。本综述重点介绍了 UCNP 在神经科学中的最新应用,包括 UCNP 介导的 NIR 上转换光遗传学以及 UCNP 辅助的逆行神经元示踪和成像。