Suppr超能文献

近红外光激活的纳米颗粒用于深层组织穿透无线光遗传学。

Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

出版信息

Adv Healthc Mater. 2019 Mar;8(6):e1801132. doi: 10.1002/adhm.201801132. Epub 2019 Jan 11.

Abstract

Optogenetics has been developed to control the activities and functions of cells with high spatiotemporal resolution, cell-type specificity, and flexibility. However, current optogenetic tools generally rely on visible light (e.g., blue or yellow) with shallow tissue penetration ability that does require invasive fiber-optic probes to deliver visible light into organs and animal tissues. This often results in a series of side effects, such as tissue damage and unwanted inflammation. Fortunately, the emerging wireless optogenetic tools that can respond to deep-tissue-penetrating near-infrared (NIR) light have attracted increasing attention due to their much-reduced damage to living organisms. There are mainly two types of NIR-activatable optogenetic tools: one uses lanthanide-doped upconversion nanoparticles to transduce NIR light to visible light to modulate classical opsin-expressing neurons; the other type couples with an NIR absorber to convert NIR light to heat to activate thermosensitive proteins. These NIR-activatable optogenetic tools enable low-invasive "remote control" activation and inhibition of cellular signaling pathways. This approach has great potential to help create more innovative therapies for diseases like cancer, diabetes, and neuronal disorders in the near future. Therefore, this review article summarizes the recent advances on design strategies and synthetic methods of NIR-activatable nanomaterials for wireless optogenetic applications.

摘要

光遗传学技术的发展使得我们能够以高时空分辨率、细胞类型特异性和灵活性来控制细胞的活动和功能。然而,目前的光遗传学工具通常依赖于可见光(例如蓝色或黄色光),其组织穿透能力较浅,需要通过侵入性光纤探针将可见光传输到器官和动物组织中。这通常会导致一系列副作用,如组织损伤和不必要的炎症。幸运的是,新兴的无线光遗传学工具可以响应深组织穿透的近红外(NIR)光,由于对活体的损伤大大减少,因此引起了越来越多的关注。NIR 光激活型光遗传学工具主要有两种类型:一种是利用镧系掺杂的上转换纳米粒子将 NIR 光转换为可见光,从而调节表达经典视蛋白的神经元;另一种类型是与 NIR 吸收剂偶联,将 NIR 光转换为热,以激活热敏蛋白。这些 NIR 光激活型光遗传学工具可实现对细胞信号通路的低侵入性“远程控制”激活和抑制。这种方法在不久的将来有望为癌症、糖尿病和神经元疾病等疾病创造更具创新性的治疗方法。因此,本文综述了用于无线光遗传学应用的 NIR 光激活型纳米材料的设计策略和合成方法的最新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验