Suppr超能文献

荚膜多糖生物合成需要一个由 PelD、PelE、PelF 和 PelG 组成的内膜复合物。

Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG.

机构信息

Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00684-19.

Abstract

The Pel polysaccharide is a structural component of the extracellular matrix of biofilms. Recent analyses suggest that Pel production proceeds via a synthase-dependent polysaccharide secretion pathway, which in Gram-negative bacteria is defined by an outer membrane β-barrel porin, a periplasmic tetratricopeptide repeat-containing scaffold protein, and an inner membrane-embedded synthase. Polymerization is catalyzed by the glycosyltransferase domain of the synthase component of these systems, which is allosterically regulated by cyclic 3',5'-dimeric GMP (c-di-GMP). However, while the outer membrane and periplasmic components of the Pel system have been characterized, the inner membrane complex required for Pel polymerization has yet to be defined. To address this, we examined over 500 gene clusters from diverse species of This analysis identified an invariant set of four syntenic genes, three of which, , , and , are predicted to reside within the inner membrane, while the fourth, , encodes a glycosyltransferase domain. Using a combination of gene deletion analysis, subcellular fractionation, coimmunoprecipitation, and bacterial two-hybrid assays, we provide evidence for the existence of an inner membrane complex of PelD, PelE, and PelG. Furthermore, we show that this complex interacts with PelF in order to facilitate its localization to the inner membrane. Mutations that abolish c-di-GMP binding to the known receptor domain of PelD had no effect on complex formation, suggesting that c-di-GMP binding stimulates Pel production through quaternary structural rearrangements. Together, these data provide the first experimental evidence of an inner membrane complex involved in Pel polysaccharide production. The exopolysaccharide Pel plays an important role in bacterial cell-cell interactions, surface adhesion, and protection against certain antibiotics. We identified invariant gene clusters in over 500 diverse proteobacterial species. Using , we demonstrate that PelD, PelE, PelF, and PelG form a complex at the inner membrane and propose that this complex represents the previously unidentified Pel polysaccharide synthase, which is responsible for Pel polymerization and transport across the cytoplasmic membrane. We show that the formation of this complex is independent of cyclic 3',5'-dimeric GMP (c-di-GMP) binding to the receptor PelD. Collectively, these data establish the widespread Pel apparatus as a member of the synthase-dependent pathway of polysaccharide biosynthetic systems and broaden the architectural diversity of already-established bacterial polysaccharide synthases.

摘要

Pel 多糖是生物膜细胞外基质的结构成分。最近的分析表明,Pel 的产生是通过依赖于合成酶的多糖分泌途径进行的,在革兰氏阴性菌中,该途径由外膜 β-桶孔道蛋白、周质四肽重复支架蛋白和内膜嵌入的合成酶定义。聚合由这些系统的合成酶成分的糖基转移酶结构域催化,该结构域由环 3',5'-二核苷酸 GMP(c-di-GMP)变构调节。然而,虽然已经描述了 Pel 系统的外膜和周质成分,但用于 Pel 聚合的内膜复合物尚未确定。为了解决这个问题,我们检查了来自不同种属的 500 多个基因簇。这项分析确定了一组不变的四个基因,其中三个,PelD、PelE 和 PelG,预计位于内膜内,而第四个,PelF,编码糖基转移酶结构域。我们使用基因缺失分析、亚细胞分级分离、共免疫沉淀和细菌双杂交测定的组合,提供了 PelD、PelE 和 PelG 内膜复合物存在的证据。此外,我们表明,该复合物与 PelF 相互作用以促进其定位于内膜。使 c-di-GMP 无法与 PelD 已知受体结构域结合的突变对复合物形成没有影响,这表明 c-di-GMP 结合通过四级结构重排刺激 Pel 产生。总之,这些数据提供了参与 Pel 多糖产生的内膜复合物的第一个实验证据。外多糖 Pel 在细菌细胞间相互作用、表面粘附和保护免受某些抗生素方面发挥着重要作用。我们在 500 多种不同的变形杆菌物种中鉴定出不变的 基因簇。使用 ,我们证明 PelD、PelE、PelF 和 PelG 在内膜形成复合物,并提出该复合物代表以前未识别的 Pel 多糖合成酶,该酶负责 Pel 聚合和穿过细胞质膜的运输。我们表明,该复合物的形成独立于 c-di-GMP 与受体 PelD 的结合。总的来说,这些数据将广泛的 Pel 装置确立为多糖生物合成系统中依赖于合成酶途径的成员,并拓宽了已建立的细菌多糖合成酶的结构多样性。

相似文献

2
Binding of GTP to BifA is required for the production of Pel-dependent biofilms in .
J Bacteriol. 2024 Feb 22;206(2):e0033123. doi: 10.1128/jb.00331-23. Epub 2024 Jan 10.
4
The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation.
Microbiology (Reading). 2005 Mar;151(Pt 3):985-997. doi: 10.1099/mic.0.27410-0.
5
A cyclic-di-GMP receptor required for bacterial exopolysaccharide production.
Mol Microbiol. 2007 Sep;65(6):1474-84. doi: 10.1111/j.1365-2958.2007.05879.x.
6
PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in .
J Biol Chem. 2017 Nov 24;292(47):19411-19422. doi: 10.1074/jbc.M117.812842. Epub 2017 Sep 27.
7
PelA deacetylase activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa.
J Bacteriol. 2013 May;195(10):2329-39. doi: 10.1128/JB.02150-12. Epub 2013 Mar 15.
8
Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster.
PLoS Pathog. 2020 Apr 1;16(4):e1008281. doi: 10.1371/journal.ppat.1008281. eCollection 2020 Apr.
10
Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2013 May;79(9):2968-78. doi: 10.1128/AEM.03666-12. Epub 2013 Feb 22.

引用本文的文献

2
Auto-aggregation in is driven by the Pel polysaccharide.
mBio. 2025 Jul 7:e0119625. doi: 10.1128/mbio.01196-25.
4
PelD is required downstream of c-di-GMP for host specialization of Pseudomonas lurida.
BMC Microbiol. 2025 Apr 16;25(1):220. doi: 10.1186/s12866-025-03945-1.
6
The transcriptional regulation effects of histidine, isoleucine and glutamate on free exopolysaccharide biosynthesis of 937.
Front Microbiol. 2025 Jan 8;15:1476940. doi: 10.3389/fmicb.2024.1476940. eCollection 2024.
7
Structural conservation and functional role of TfpY-like proteins in type IV pilus assembly.
J Bacteriol. 2025 Feb 20;207(2):e0034324. doi: 10.1128/jb.00343-24. Epub 2025 Jan 16.
8
The pattern of antibiotic resistance and distribution of the biofilm-producing () isolated from infectious hospital departments.
SAGE Open Med. 2024 Nov 15;12:20503121241298826. doi: 10.1177/20503121241298826. eCollection 2024.

本文引用的文献

1
The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition.
Curr Opin Struct Biol. 2019 Feb;54:43-49. doi: 10.1016/j.sbi.2018.12.004. Epub 2019 Jan 29.
2
Gram-negative synthase-dependent exopolysaccharide biosynthetic machines.
Curr Opin Struct Biol. 2018 Dec;53:32-44. doi: 10.1016/j.sbi.2018.05.001. Epub 2018 May 26.
3
PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in .
J Biol Chem. 2017 Nov 24;292(47):19411-19422. doi: 10.1074/jbc.M117.812842. Epub 2017 Sep 27.
4
Targeting microbial biofilms: current and prospective therapeutic strategies.
Nat Rev Microbiol. 2017 Dec;15(12):740-755. doi: 10.1038/nrmicro.2017.99. Epub 2017 Sep 25.
5
Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of .
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2892-2897. doi: 10.1073/pnas.1613606114. Epub 2017 Feb 27.
6
Importance of the Exopolysaccharide Matrix in Antimicrobial Tolerance of Pseudomonas aeruginosa Aggregates.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02696-16. Print 2017 Apr.
7
HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?
J Cell Sci. 2016 Nov 1;129(21):3963-3970. doi: 10.1242/jcs.185710. Epub 2016 Oct 6.
8
A new view of the tree of life.
Nat Microbiol. 2016 Apr 11;1:16048. doi: 10.1038/nmicrobiol.2016.48.
9
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange.
Nat Protoc. 2015 Nov;10(11):1820-41. doi: 10.1038/nprot.2015.115. Epub 2015 Oct 22.
10
Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11353-8. doi: 10.1073/pnas.1503058112. Epub 2015 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验