Chen Weiyin, Li John Tianci, Ge Chang, Yuan Zhe, Algozeeb Wala A, Advincula Paul A, Gao Guanhui, Chen Jinhang, Ling Kexin, Choi Chi Hun, McHugh Emily A, Wyss Kevin M, Luong Duy Xuan, Wang Zhe, Han Yimo, Tour James M
Chemistry Department, Rice University, 6100 Main Street MS 60, Houston, TX, 77005, USA.
Applied Physics Program, Rice University, 6100 Main Street MS 60, Houston, TX, 77005, USA.
Adv Mater. 2022 Aug;34(33):e2202666. doi: 10.1002/adma.202202666. Epub 2022 Jul 17.
Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well-aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron-carbon-nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (10 to 10 K s ) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well-aligned counterparts. When using non-carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard-to-access turbostratic materials.
二维材料中的 turbostratic 层存在层间错位。这种错位会扩大本征层间距离,并削弱相邻层之间的光学和电子相互作用。这使得这些材料具有与晶格排列良好且耦合相互作用强的结构不同的特性。然而,由于其热力学亚稳性质,直接快速合成 turbostratic 材料仍然是一个挑战。在此,报道了一种闪速焦耳加热(FJH)方法,通过在毫秒级(10⁻³ 至 10⁻¹ K/s)内进行的动力学控制超快冷却过程,实现具有 turbostratic 结构的硼 - 碳 - 氮三元化合物的批量合成。理论计算支持了 turbostratic 结构的存在,并提供了关于转化为相应排列良好的对应物的能垒估计。当使用非碳导电添加剂时,可以直接合成氮化硼。turbostratic 性质有利于机械剥离和更稳定的分散。因此,将闪速加热产物添加到涂覆在铜表面的聚乙烯醇纳米复合薄膜中,可大大提高铜在 0.5 M 硫酸或 3.5 wt%盐溶液中的耐腐蚀性。FJH 允许使用块状材料作为反应物,并提供了一种快速制备大量迄今难以获得的 turbostratic 材料的方法。