Watcharamaisakul Sukasem, Janphuang Nisa, Chueangam Warisara, Srisom Kriettisak, Rueangwittayanon Anuchit, Rittihong Ukit, Tunmee Sarayut, Chanlek Narong, Pornsetmetakul Peerapol, Wirojsirasak Warodom, Watanarojanaporn Nantida, Ruethaivanich Kampon, Janphuang Pattanaphong
School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand.
Nanomaterials (Basel). 2025 Mar 20;15(6):468. doi: 10.3390/nano15060468.
This study addresses the challenge of the scalable, cost-effective synthesis of high-quality turbostratic graphene from low-cost carbon sources, including biomass waste such as sugarcane leaves, bagasse, corncobs, and palm bunches, using the Direct Current Long Pulse Joule Heating (DC-LPJH) technique. By optimizing the carbonization process and blending biomass-derived carbon with carbon black and turbostratic graphene, the gram-scale production of turbostratic graphene was achieved in just a few seconds. The synthesis process involved applying an 18 kJ electrical energy pulse for 1.5 s, resulting in temperatures of approximately 3000 K that facilitated the transformation of the carbon atoms into well-ordered turbostratic graphene. Structural and morphological characterization via Raman spectroscopy revealed low-intensity or absent D bands, with a high I/I ratio (~0.8-1.2), indicating monolayer turbostratic graphene formation. X-ray photoelectron spectroscopy (XPS) identified sp-hybridized carbon and oxygenated functional groups, while NEXAFS spectroscopy confirmed the presence of graphitic features and both sp and sp bonding states. Energy consumption calculations for the DC-LPJH process demonstrated approximately 10 kJ per gram, demonstrating the potential for cost-effective production. This work presents an efficient approach for producing high-quality turbostratic graphene from low-cost carbon sources, with applications in enhancing the properties of composites, polymers, and building materials.
本研究应对了一项挑战,即利用直流长脉冲焦耳加热(DC-LPJH)技术从低成本碳源(包括甘蔗叶、甘蔗渣、玉米芯和棕榈果串等生物质废料)中可扩展、经济高效地合成高质量的 turbostratic 石墨烯。通过优化碳化过程,并将生物质衍生碳与炭黑和 turbostratic 石墨烯混合,仅在几秒钟内就实现了克级规模的 turbostratic 石墨烯生产。合成过程包括施加 18 kJ 的电能脉冲,持续 1.5 秒,产生约 3000 K 的温度,这促进了碳原子转变为有序的 turbostratic 石墨烯。通过拉曼光谱进行的结构和形态表征显示 D 带强度低或不存在,I/I 比高(约 0.8 - 1.2),表明形成了单层 turbostratic 石墨烯。X 射线光电子能谱(XPS)鉴定出 sp 杂化碳和含氧官能团,而近边 X 射线吸收精细结构光谱(NEXAFS)证实了石墨特征以及 sp 和 sp 键合状态的存在。DC-LPJH 过程的能耗计算表明每克约 10 kJ,显示出经济高效生产的潜力。这项工作提出了一种从低成本碳源生产高质量 turbostratic 石墨烯的有效方法,可应用于增强复合材料、聚合物和建筑材料的性能。