Suppr超能文献

纤毛虫微宇宙中,碎裂作用介导了热栖息地选择。

Fragmentation mediates thermal habitat choice in ciliate microcosms.

机构信息

Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium.

出版信息

Proc Biol Sci. 2020 Jan 29;287(1919):20192818. doi: 10.1098/rspb.2019.2818.

Abstract

Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.

摘要

生境破碎化预计会增加斑块间的距离,从而减少扩散运动。此外,由于生境破碎化预计会增加在景观中斑块间移动的成本,它应该会阻碍生物进行明智的扩散决策的能力或倾向。在这里,我们使用纤毛虫的微宇宙来通过连接温度不同的斑块的走廊的长度来进行实验性地操纵,以测试生境破碎化是否会影响栖息地选择。我们表明,斑块间距离的两倍增加预计会阻碍生物在移民时选择栖息地的能力。有趣的是,它还增加了它们在移民时的栖息地选择,这表明当获得有关相邻斑块的信息变得更加困难时,生物在决定是留在还是离开其斑块时会更加挑剔。这项研究指出,生境破碎化不仅可能影响扩散率,而且还可能影响扩散的非随机性水平,移民和移民决策受到不同的影响。这些破碎化的后果可能会极大地改变面临环境变化的种群的生态和进化动态。

相似文献

1
Fragmentation mediates thermal habitat choice in ciliate microcosms.
Proc Biol Sci. 2020 Jan 29;287(1919):20192818. doi: 10.1098/rspb.2019.2818.
2
Habitat choice meets thermal specialization: Competition with specialists may drive suboptimal habitat preferences in generalists.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11988-11993. doi: 10.1073/pnas.1805574115. Epub 2018 Nov 5.
3
Social information from immigrants: multiple immigrant-based sources of information for dispersal decisions in a ciliate.
J Anim Ecol. 2015 Sep;84(5):1373-83. doi: 10.1111/1365-2656.12380. Epub 2015 May 26.
4
6
Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes.
J Anim Ecol. 2011 Sep;80(5):1070-7. doi: 10.1111/j.1365-2656.2011.01848.x. Epub 2011 May 18.
7
Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects.
Ecology. 2023 May;104(5):e4037. doi: 10.1002/ecy.4037. Epub 2023 Apr 4.
9
Dispersal depression with habitat fragmentation in the bog fritillary butterfly.
Ecology. 2006 Apr;87(4):1057-65. doi: 10.1890/0012-9658(2006)87[1057:ddwhfi]2.0.co;2.
10
Coevolution of patch-type dependent emigration and patch-type dependent immigration.
J Theor Biol. 2017 Aug 7;426:140-151. doi: 10.1016/j.jtbi.2017.05.020. Epub 2017 May 18.

引用本文的文献

1
Numerical and functional response of phagotrophic aquatic protists: the ideal experiment-and why we cannot get it.
Front Microbiol. 2025 Jun 10;16:1559802. doi: 10.3389/fmicb.2025.1559802. eCollection 2025.
2
Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes.
Proc Biol Sci. 2025 Apr;292(2045):20242796. doi: 10.1098/rspb.2024.2796. Epub 2025 Apr 30.
3
The interplay between abiotic and biotic factors in dispersal decisions in metacommunities.
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 29;379(1907):20230137. doi: 10.1098/rstb.2023.0137. Epub 2024 Jun 24.
4
Demography and movement patterns of a freshwater ciliate: The influence of oxygen availability.
Ecol Evol. 2024 Apr 23;14(4):e11291. doi: 10.1002/ece3.11291. eCollection 2024 Apr.
5
Spatiotemporal thermal variation drives diversity trends in experimental landscapes.
J Anim Ecol. 2023 Feb;92(2):430-441. doi: 10.1111/1365-2656.13867. Epub 2022 Dec 15.
6
Dispersal plasticity driven by variation in fitness across species and environmental gradients.
Ecol Lett. 2022 Nov;25(11):2410-2421. doi: 10.1111/ele.14101. Epub 2022 Oct 5.
7
Landscape configuration affects probability of apex predator presence and community structure in experimental metacommunities.
Oecologia. 2022 May;199(1):193-204. doi: 10.1007/s00442-022-05178-9. Epub 2022 May 6.
8
Plastic cell morphology changes during dispersal.
iScience. 2021 Jul 27;24(8):102915. doi: 10.1016/j.isci.2021.102915. eCollection 2021 Aug 20.
9
Eco-evolutionary consequences of habitat warming and fragmentation in communities.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1933-1950. doi: 10.1111/brv.12732. Epub 2021 May 16.

本文引用的文献

1
The interplay between movement, morphology and dispersal in ciliates.
PeerJ. 2019 Dec 17;7:e8197. doi: 10.7717/peerj.8197. eCollection 2019.
2
Biased movement drives local cryptic coloration on distinct urban pavements.
Proc Biol Sci. 2019 Oct 9;286(1912):20191343. doi: 10.1098/rspb.2019.1343. Epub 2019 Oct 2.
3
Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives.
Am Nat. 2019 Oct;194(4):495-515. doi: 10.1086/705020. Epub 2019 Aug 27.
5
Bottom-up and top-down control of dispersal across major organismal groups.
Nat Ecol Evol. 2018 Dec;2(12):1859-1863. doi: 10.1038/s41559-018-0686-0. Epub 2018 Nov 5.
6
Habitat choice meets thermal specialization: Competition with specialists may drive suboptimal habitat preferences in generalists.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11988-11993. doi: 10.1073/pnas.1805574115. Epub 2018 Nov 5.
8
Gene flow favours local adaptation under habitat choice in ciliate microcosms.
Nat Ecol Evol. 2017 Sep;1(9):1407-1410. doi: 10.1038/s41559-017-0269-5. Epub 2017 Aug 14.
9
Comment on Van Belleghem et al. 2016: Habitat choice mechanisms in speciation and other forms of diversification.
Evolution. 2017 Nov;71(11):2754-2761. doi: 10.1111/evo.13375. Epub 2017 Oct 20.
10
EVOLUTION OF DISPERSAL RATES IN METAPOPULATION MODELS: BRANCHING AND CYCLIC DYNAMICS IN PHENOTYPE SPACE.
Evolution. 1997 Dec;51(6):1730-1741. doi: 10.1111/j.1558-5646.1997.tb05097.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验