Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
Mol Oral Microbiol. 2020 Apr;35(2):66-77. doi: 10.1111/omi.12280. Epub 2020 Feb 13.
Porphyromonas gingivalis is associated with chronic periodontitis and may initially colonize the oral cavity by adhering to streptococci. Adhesion to streptococci is driven by interaction of the minor fimbrial antigen (Mfa1) with streptococcal antigen I/II. We identified the region of antigen I/II required for this interaction and developed small molecule mimetics that inhibited P. gingivalis adherence. However, the functional motifs of Mfa1 involved in the interaction with antigen I/II remain uncharacterized. A series of N- and C-terminal peptide fragments of Mfa1 were expressed and tested for inhibition of P. gingivalis adherence to S. gordonii. This approach identified residues 225-400 of Mfa1 as essential for P. gingivalis adherence. Using the three-dimensional structure of Mfa1, a putative binding cleft was identified using SiteMap and five small molecule mimetics could dock in this site. Site-specific mutation of residues in the predicted cleft, including R240A, W275A, D321A and A357P inhibited the interaction of Mfa1 with streptococci, whereas mutation of residues not in the predicted cleft (V238A, I252F and ΔK253) had no effect. Complementation of an Mfa1-deficient P. gingivalis strain with wild-type mfa1 restored adherence to streptococci, whereas complementation with full-length mfa1 containing the R240A or A357P mutations did not restore adherence. The mutations did not affect polymerization of Mfa1, suggesting that the complemented strains produced intact minor fimbriae. These results identified specific residues and structural motifs required for the Mfa1-antigen I/II interaction and will facilitate the design of small molecule therapeutics to prevent P. gingivalis colonization of the oral cavity.
牙龈卟啉单胞菌与慢性牙周炎有关,最初可能通过黏附链球菌定植于口腔。与链球菌的黏附由次要菌毛抗原(Mfa1)与链球菌抗原 I/II 的相互作用驱动。我们确定了该相互作用所需的抗原 I/II 区域,并开发了抑制牙龈卟啉单胞菌黏附的小分子模拟物。然而,Mfa1 中参与与抗原 I/II 相互作用的功能基序仍未被表征。表达了 Mfa1 的一系列 N 端和 C 端肽片段,并测试其对抑制牙龈卟啉单胞菌黏附至 S. gordonii 的作用。这种方法确定了 Mfa1 的 225-400 残基对牙龈卟啉单胞菌的黏附是必需的。利用 Mfa1 的三维结构,使用 SiteMap 识别了一个假定的结合裂缝,并可以在该位点对接五个小分子模拟物。在预测的裂缝中残基的位点特异性突变,包括 R240A、W275A、D321A 和 A357P 抑制了 Mfa1 与链球菌的相互作用,而不在预测的裂缝中的残基的突变(V238A、I252F 和 ΔK253)没有影响。用野生型 mfa1 互补 Mfa1 缺陷型牙龈卟啉单胞菌恢复了对链球菌的黏附,而用包含 R240A 或 A357P 突变的全长 mfa1 进行互补则没有恢复黏附。这些突变不影响 Mfa1 的聚合,表明互补菌株产生了完整的次要菌毛。这些结果确定了 Mfa1-抗原 I/II 相互作用所需的特定残基和结构基序,并将有助于设计小分子治疗剂以防止牙龈卟啉单胞菌定植口腔。