Suppr超能文献

特定离子对PI(4,5)P簇集的影响表征:分子动力学模拟与图论分析

Characterization of Specific Ion Effects on PI(4,5)P Clustering: Molecular Dynamics Simulations and Graph-Theoretic Analysis.

作者信息

Han Kyungreem, Gericke Arne, Pastor Richard W

机构信息

Laboratory of Computational Biology, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States.

Department of Chemistry and Biochemistry , Worcester Polytechnic Institute , Worcester , Massachusetts 01609 , United States.

出版信息

J Phys Chem B. 2020 Feb 20;124(7):1183-1196. doi: 10.1021/acs.jpcb.9b10951. Epub 2020 Feb 11.

Abstract

Numerous cellular functions mediated by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P; PIP) involve clustering of the lipid as well as colocalization with other lipids. Although the cation-mediated electrostatic interaction is regarded as the primary clustering mechanism, the ion-specific nature of the intermolecular network formation makes it challenging to characterize the clusters. Here we use all-atom molecular dynamics (MD) simulations of PIP monolayers and graph-theoretic analysis to gain insight into the phenomenon. MD simulations reveal that the intermolecular interactions preferentially occur between specific cations and phosphate groups (P1, P4, and P5) of the inositol headgroup with better-matched kosmotropic/chaotropic characters consistent with the law of matching water affinities (LMWA). Ca is strongly attracted to P4/P5, while K preferentially binds to P1; Na interacts with both P4/P5 and P1. These specific interactions lead to the characteristic clustering patterns. Specificially, the size distributions and structures of PIP clusters generated by kosmotropic cations Ca and Na are bimodal, with a combination of small and large clusters, while there is little clustering in the presence of only chaotropic K; the largest clusters are obtained in systems with all three cations. The small-world network (a model with both local and long-range connections) best characterizes the clusters, followed by the random and the scale-free networks. More generally, the present results interpreted within the LMWA are consistent with the relative eukaryotic intracellular concentrations Ca ≪ Na < Mg < K; that is, concentrations of Ca and Na must be low to prevent damaging aggregation of lipids, DNA, RNA and phosphate-containing proteins.

摘要

由磷脂酰肌醇(4,5)-二磷酸(PI(4,5)P₂;PIP₂)介导的众多细胞功能涉及脂质的聚集以及与其他脂质的共定位。尽管阳离子介导的静电相互作用被视为主要的聚集机制,但分子间网络形成的离子特异性性质使得表征这些聚集体具有挑战性。在此,我们使用PIP₂单层的全原子分子动力学(MD)模拟和图论分析来深入了解这一现象。MD模拟表明,分子间相互作用优先发生在特定阳离子与肌醇头部基团的特定磷酸基团(P₁、P₄和P₅)之间,其具有与匹配水亲和力定律(LMWA)一致的更好匹配的促晶/促溶特性。Ca强烈吸引到P₄/P₅,而K优先结合到P₁;Na与P₄/P₅和P₁都相互作用。这些特定相互作用导致了特征性的聚集模式。具体而言,由促晶阳离子Ca和Na产生的PIP₂聚集体的尺寸分布和结构是双峰的,有小聚集体和大聚集体的组合,而仅存在促溶K时几乎没有聚集;在含有所有三种阳离子的系统中获得最大的聚集体。小世界网络(一种具有局部和远程连接的模型)最能表征这些聚集体,其次是随机网络和无标度网络。更一般地说,在LMWA范围内解释的当前结果与真核细胞内相对浓度Ca≪Na<Mg<K一致;也就是说,Ca和Na的浓度必须低以防止脂质、DNA、RNA和含磷酸盐蛋白质的有害聚集。

相似文献

1
Characterization of Specific Ion Effects on PI(4,5)P Clustering: Molecular Dynamics Simulations and Graph-Theoretic Analysis.
J Phys Chem B. 2020 Feb 20;124(7):1183-1196. doi: 10.1021/acs.jpcb.9b10951. Epub 2020 Feb 11.
2
Design principles of PI(4,5)P clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2202647119. doi: 10.1073/pnas.2202647119. Epub 2022 May 23.
3
Ion-Induced PIP2 Clustering with Martini3: Modification of Phosphate-Ion Interactions and Comparison with CHARMM36.
J Phys Chem B. 2024 Mar 7;128(9):2134-2143. doi: 10.1021/acs.jpcb.3c06523. Epub 2024 Feb 23.
4
Phosphatidylinositol-4,5-bisphosphate ionization in the presence of cholesterol, calcium or magnesium ions.
Chem Phys Lipids. 2014 Sep;182:62-72. doi: 10.1016/j.chemphyslip.2013.11.004. Epub 2013 Dec 2.
6
Multivalent Cation-Bridged PI(4,5)P Clusters Form at Very Low Concentrations.
Biophys J. 2018 Jun 5;114(11):2630-2639. doi: 10.1016/j.bpj.2018.04.048.
7
PLD2-PI(4,5)P2 interactions in fluid phase membranes: Structural modeling and molecular dynamics simulations.
PLoS One. 2020 Jul 20;15(7):e0236201. doi: 10.1371/journal.pone.0236201. eCollection 2020.
8
PI(4,5)P Clustering and Its Impact on Biological Functions.
Annu Rev Biochem. 2021 Jun 20;90:681-707. doi: 10.1146/annurev-biochem-070920-094827. Epub 2021 Jan 13.
9
A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca-activated Cl channel ANO1 (TMEM16A).
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19952-19962. doi: 10.1073/pnas.1904012116. Epub 2019 Sep 12.
10
Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions.
J Phys Chem B. 2018 Feb 1;122(4):1484-1494. doi: 10.1021/acs.jpcb.7b10730. Epub 2018 Jan 22.

引用本文的文献

1
The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations.
J Mol Biol. 2025 Feb 15;437(4):168937. doi: 10.1016/j.jmb.2025.168937. Epub 2025 Jan 9.
2
PIP modulates TRPC3 activity via TRP helix and S4-S5 linker.
Nat Commun. 2024 Jun 18;15(1):5220. doi: 10.1038/s41467-024-49396-6.
3
Ion-Induced PIP2 Clustering with Martini3: Modification of Phosphate-Ion Interactions and Comparison with CHARMM36.
J Phys Chem B. 2024 Mar 7;128(9):2134-2143. doi: 10.1021/acs.jpcb.3c06523. Epub 2024 Feb 23.
5
FERM domains recruit ample PI(4,5)Ps to form extensive protein-membrane attachments.
Biophys J. 2023 Apr 4;122(7):1325-1333. doi: 10.1016/j.bpj.2023.02.027. Epub 2023 Feb 22.
6
Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures.
Biophys J. 2022 Sep 6;121(17):3188-3199. doi: 10.1016/j.bpj.2022.07.036. Epub 2022 Aug 4.
7
Exploring CRD mobility during RAS/RAF engagement at the membrane.
Biophys J. 2022 Oct 4;121(19):3630-3650. doi: 10.1016/j.bpj.2022.06.035. Epub 2022 Jul 1.
8
Design principles of PI(4,5)P clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2202647119. doi: 10.1073/pnas.2202647119. Epub 2022 May 23.
9
Effects of cholesterol and PIP2 on interactions between glycophorin A and Band 3 in lipid bilayers.
Biophys J. 2022 Jun 7;121(11):2069-2077. doi: 10.1016/j.bpj.2022.05.001. Epub 2022 May 6.

本文引用的文献

1
Studies on the mechanism of general anesthesia.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13757-13766. doi: 10.1073/pnas.2004259117. Epub 2020 May 28.
2
Generalization of the small-world effect on a model approaching the Erdős-Rényi random graph.
Sci Rep. 2019 Jun 25;9(1):9268. doi: 10.1038/s41598-019-45576-3.
3
Multivalent Cation-Bridged PI(4,5)P Clusters Form at Very Low Concentrations.
Biophys J. 2018 Jun 5;114(11):2630-2639. doi: 10.1016/j.bpj.2018.04.048.
4
Is Calcium Fine-Tuning Phosphoinositide-Mediated Signaling Events Through Clustering?
Biophys J. 2018 Jun 5;114(11):2483-2484. doi: 10.1016/j.bpj.2018.05.004.
5
Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis.
J Gen Physiol. 2018 Feb 5;150(2):211-224. doi: 10.1085/jgp.201711875. Epub 2018 Jan 11.
6
Effect of H-Bond Donor Lipids on Phosphatidylinositol-3,4,5-Trisphosphate Ionization and Clustering.
Biophys J. 2018 Jan 9;114(1):126-136. doi: 10.1016/j.bpj.2017.10.029.
7
Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions.
J Phys Chem B. 2018 Feb 1;122(4):1484-1494. doi: 10.1021/acs.jpcb.7b10730. Epub 2018 Jan 22.
8
Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition.
J Am Chem Soc. 2017 Mar 22;139(11):4019-4024. doi: 10.1021/jacs.6b11760. Epub 2017 Mar 7.
9
Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D.
Nat Commun. 2016 Dec 15;7:13873. doi: 10.1038/ncomms13873.
10
Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?
J Med Chem. 2016 Jun 9;59(11):5149-57. doi: 10.1021/acs.jmedchem.5b00671. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验