Suppr超能文献

相似文献

1
Exploring the Pathogenicity of Q8r1-96 and Other Strains of the Complex on Tomato.
Plant Dis. 2020 Apr;104(4):1026-1031. doi: 10.1094/PDIS-09-19-1989-RE. Epub 2020 Jan 29.
2
Evaluation of the Phytotoxicity of 2,4-Diacetylphloroglucinol and Q8r1-96 on Different Wheat Cultivars.
Phytopathology. 2021 Nov;111(11):1935-1941. doi: 10.1094/PHYTO-07-20-0315-R. Epub 2021 Nov 1.
3
Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.
Appl Environ Microbiol. 2006 Nov;72(11):7111-22. doi: 10.1128/AEM.01215-06. Epub 2006 Aug 25.
6
Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil.
Phytopathology. 2018 Dec;108(12):1363-1372. doi: 10.1094/PHYTO-01-18-0024-R. Epub 2018 Oct 17.
8
Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants.
J Appl Microbiol. 2011 Jan;110(1):341-52. doi: 10.1111/j.1365-2672.2010.04891.x. Epub 2010 Nov 23.
9
The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96.
Microbiology (Reading). 2006 Mar;152(Pt 3):863-872. doi: 10.1099/mic.0.28545-0.
10
Rhizosphere Competence of Wild-Type and Genetically Engineered Pseudomonas brassicacearum Is Affected by the Crop Species.
Phytopathology. 2016 Jun;106(6):554-61. doi: 10.1094/PHYTO-09-15-0244-R. Epub 2016 Apr 29.

引用本文的文献

1
Multifaceted Impacts of Plant-Beneficial spp. in Managing Various Plant Diseases and Crop Yield Improvement.
ACS Omega. 2023 Jun 16;8(25):22296-22315. doi: 10.1021/acsomega.3c00870. eCollection 2023 Jun 27.
3
The Stimulation of Indigenous Bacterial Antagonists by γ-Glutamyl--Allyl-l-Cysteine Increases Soil Suppressiveness to Fusarium Wilt.
Appl Environ Microbiol. 2022 Dec 20;88(24):e0155422. doi: 10.1128/aem.01554-22. Epub 2022 Nov 29.
5
Rhizosphere plant-microbe interactions under water stress.
Adv Appl Microbiol. 2021;115:65-113. doi: 10.1016/bs.aambs.2021.03.001. Epub 2021 Apr 16.
6
Phloroglucinol Derivatives in Plant-Beneficial spp.: Biosynthesis, Regulation, and Functions.
Metabolites. 2021 Mar 20;11(3):182. doi: 10.3390/metabo11030182.

本文引用的文献

1
Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil.
Phytopathology. 2018 Dec;108(12):1363-1372. doi: 10.1094/PHYTO-01-18-0024-R. Epub 2018 Oct 17.
3
Distribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the spp. Reveals Unexpected Polyphyletism.
Front Microbiol. 2017 Jun 30;8:1218. doi: 10.3389/fmicb.2017.01218. eCollection 2017.
4
Disease Suppressive Soils: New Insights from the Soil Microbiome.
Phytopathology. 2017 Nov;107(11):1284-1297. doi: 10.1094/PHYTO-03-17-0111-RVW. Epub 2017 Sep 20.
5
Rhizosphere Competence of Wild-Type and Genetically Engineered Pseudomonas brassicacearum Is Affected by the Crop Species.
Phytopathology. 2016 Jun;106(6):554-61. doi: 10.1094/PHYTO-09-15-0244-R. Epub 2016 Apr 29.
6
Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria.
Front Plant Sci. 2014 Mar 27;5:114. doi: 10.3389/fpls.2014.00114. eCollection 2014.
10
Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat.
Appl Environ Microbiol. 2012 May;78(9):3214-20. doi: 10.1128/AEM.07968-11. Epub 2012 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验