Suppr超能文献

橄榄球比赛表现和每周工作量:使用数据挖掘过程进入复杂性。

Rugby game performances and weekly workload: Using of data mining process to enter in the complexity.

机构信息

Laboratoire Mouvement, Equilibre, Performance, Santé (MEPS, EA-4445), Université de pau et des pays de l'Adour, Tarbes, France.

SASP Club Athlétique Brive Corrèze (CABC), Brive-La-Gaillarde, France.

出版信息

PLoS One. 2020 Jan 29;15(1):e0228107. doi: 10.1371/journal.pone.0228107. eCollection 2020.

Abstract

This study aimed to i) identify key performance indicators of professional rugby matches, ii) define synthetic indicators of performance and iii) analyze how weekly workload (2WL) influences match performance throughout an entire season at different time-points (considering WL of up to 8 weeks prior to competition). This study uses abundant sports data and data mining techniques to assess player performance and to determine the influence of 2WL on performance. WL, locomotor activity and rugby specific actions were collected on 14 professional players (26.9 ± 1.9 years) during training and official matches. In order to highlight key performance indicators, a mixed-linear model was used to compare the players' activity relatively to competition results. This analysis showed that defensive skills represent a fundamental factor of team performance. Furthermore, a principal component analysis demonstrated that 88% of locomotor activity could be highlighted by 2 dimensions including total distance, high-speed/metabolic efforts and the number of sprints and accelerations. The final purpose of this study was to analyze the influence that WL has on match performance. To verify this, 2 different statistical models were used. A threshold-based model, from data mining processes, identified the positive influence (p<0.05) that chronic body impacts has on the ability to win offensive 1 on 1 duels during competition. This study highlights practical implications necessary for developing a better understanding of rugby match performance through the use of data mining processes.

摘要

本研究旨在

i) 确定职业橄榄球比赛的关键绩效指标,ii) 定义综合绩效指标,iii) 分析每周工作量 (2WL) 在整个赛季的不同时间点(考虑比赛前长达 8 周的 WL)如何影响比赛表现。本研究使用丰富的体育数据和数据挖掘技术来评估球员表现,并确定 2WL 对表现的影响。在训练和正式比赛中,对 14 名职业球员(26.9 ± 1.9 岁)进行了 2WL、运动活动和特定于橄榄球的动作的收集。为了突出关键绩效指标,使用混合线性模型比较了球员的活动与比赛结果的相对关系。该分析表明,防守技能是团队表现的基本因素。此外,主成分分析表明,88%的运动活动可以通过包括总距离、高速/代谢努力以及冲刺和加速次数在内的两个维度来突出。本研究的最终目的是分析 2WL 对比赛表现的影响。为了验证这一点,使用了两种不同的统计模型。基于数据挖掘过程的阈值模型确定了慢性身体冲击对在比赛中赢得进攻 1 对 1 决斗能力的积极影响(p<0.05)。本研究通过使用数据挖掘过程,强调了通过使用数据挖掘过程来更好地理解橄榄球比赛表现的实际意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验