Suppr超能文献

揭示复杂网络中内在结构的可预测性。

Revealing the predictability of intrinsic structure in complex networks.

作者信息

Sun Jiachen, Feng Ling, Xie Jiarong, Ma Xiao, Wang Dashun, Hu Yanqing

机构信息

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China.

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China.

出版信息

Nat Commun. 2020 Jan 29;11(1):574. doi: 10.1038/s41467-020-14418-6.

Abstract

Structure prediction is an important and widely studied problem in network science and machine learning, finding its applications in various fields. Despite the significant progress in prediction algorithms, the fundamental predictability of structures remains unclear, as networks' complex underlying formation dynamics are usually unobserved or difficult to describe. As such, there has been a lack of theoretical guidance on the practical development of algorithms for their absolute performances. Here, for the first time, we find that the normalized shortest compression length of a network structure can directly assess the structure predictability. Specifically, shorter binary string length from compression leads to higher structure predictability. We also analytically derive the origin of this linear relationship in artificial random networks. In addition, our finding leads to analytical results quantifying maximum prediction accuracy, and allows the estimation of the network dataset potential values through the size of the compressed network data file.

摘要

结构预测是网络科学和机器学习中一个重要且被广泛研究的问题,在各个领域都有其应用。尽管预测算法取得了显著进展,但结构的基本可预测性仍不明确,因为网络复杂的潜在形成动态通常难以观察或描述。因此,在算法实际开发以实现其绝对性能方面缺乏理论指导。在此,我们首次发现网络结构的归一化最短压缩长度可以直接评估结构可预测性。具体而言,压缩得到的二进制字符串长度越短,结构可预测性越高。我们还通过分析得出了人工随机网络中这种线性关系的起源。此外,我们的发现得出了量化最大预测准确性的分析结果,并允许通过压缩网络数据文件的大小来估计网络数据集的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0854/6989503/b929846f9214/41467_2020_14418_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验