Suppr超能文献

基于改进嵌入学习算法的异质复杂网络链接预测

Link prediction of heterogeneous complex networks based on an improved embedding learning algorithm.

作者信息

Chai Lang, Huang Rui

机构信息

School of Mathematics and Statistics, Chongqing Jiaotong Univeristy, Chongqing, China.

School of Foundation Courses, Chongqing Institute of Engineering, Chongqing, China.

出版信息

PLoS One. 2025 Jan 7;20(1):e0315507. doi: 10.1371/journal.pone.0315507. eCollection 2025.

Abstract

Link prediction in heterogeneous networks is an active research topic in the field of complex network science. Recognizing the limitations of existing methods, which often overlook the varying contributions of different local structures within these networks, this study introduces a novel algorithm named SW-Metapath2vec. This algorithm enhances the embedding learning process by assigning weights to meta-path traces generated through random walks and translates the potential connections between nodes into the cosine similarity of embedded vectors. The study was conducted using multiple real-world and synthetic datasets to validate the proposed algorithm's performance. The results indicate that SW-Metapath2vec significantly outperforms benchmark algorithms. Notably, the algorithm maintains high predictive performance even when a substantial proportion of network nodes are removed, demonstrating its resilience and potential for practical application in analyzing large-scale heterogeneous networks. These findings contribute to the advancement of link prediction techniques and offer valuable insights and tools for related research areas.

摘要

异构网络中的链路预测是复杂网络科学领域一个活跃的研究课题。认识到现有方法的局限性,这些方法往往忽视了这些网络中不同局部结构的不同贡献,本研究引入了一种名为SW-Metapath2vec的新算法。该算法通过对随机游走生成的元路径轨迹赋予权重来增强嵌入学习过程,并将节点之间的潜在连接转化为嵌入向量的余弦相似度。该研究使用多个真实世界和合成数据集来验证所提出算法的性能。结果表明,SW-Metapath2vec明显优于基准算法。值得注意的是,即使去除相当比例的网络节点,该算法仍能保持较高的预测性能,证明了其在分析大规模异构网络中的弹性和实际应用潜力。这些发现有助于链路预测技术的进步,并为相关研究领域提供有价值的见解和工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c4/11706414/8c9606328f5c/pone.0315507.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验