Tang Disheng, Du Wenbo, Shekhtman Louis, Wang Yijie, Havlin Shlomo, Cao Xianbin, Yan Gang
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
Natl Sci Rev. 2020 May;7(5):929-937. doi: 10.1093/nsr/nwaa015. Epub 2020 Feb 10.
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological-temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological-temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological-temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.
大多数真实网络中的链接往往会随时间变化。链接的这种时间性编码了节点间相互作用的顺序和因果关系,并对网络动态和功能产生深远影响。经验证据表明,许多现实世界网络中链接的时间性质并非随机。尽管如此,在考虑拓扑和时间链接模式之间的纠缠时,预测时间链接模式仍具有挑战性。在此,我们基于拓扑 - 时间规律的组合,提出一种基于熵率的框架,用于量化任何时间网络的可预测性。我们将我们的框架应用于各种模型网络,证明它确实捕捉到了内在的拓扑 - 时间规律,而先前的方法仅考虑了时间方面。我们还将我们的框架应用于18个不同类型的真实网络,并确定它们的可预测性。有趣的是,我们发现,对于大多数真实的时间网络,尽管维度增加带来的可预测性复杂性更高,但拓扑 - 时间组合可预测性高于时间可预测性。我们的结果表明,为了改进对动态过程的预测,有必要同时纳入网络的时间和拓扑方面。