Suppr超能文献

创伤性脑损伤后大鼠海马关键分子和通路的综合生物信息学分析。

Integrated Bioinformatics Analysis for the Identification of Key Molecules and Pathways in the Hippocampus of Rats After Traumatic Brain Injury.

机构信息

Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China.

Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.

出版信息

Neurochem Res. 2020 Apr;45(4):928-939. doi: 10.1007/s11064-020-02973-9. Epub 2020 Jan 30.

Abstract

High-throughput and bioinformatics technology have been broadly applied to demonstrate the key molecules involved in traumatic brain injury (TBI), while no study has integrated the available TBI-related datasets for analysis. In this study, four available expression datasets of fluid percussion injury (FPI) and sham samples from the hippocampus of rats were analysed. A total of 248 differentially expressed genes (DEGs) and 10 differentially expressed microRNAs (DEMIs) were identified. Then, functional annotation was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most of the DEGs were enriched for the term inflammatory immune response. The MCODE plug-in in the Cytoscape software was applied to build a protein-protein interaction (PPI) network, and 18 hub genes were demonstrated to be enriched in the cell cycle pathway. Besides, time sequence (3 h, 6 h, 12 h, 24 h, and 48 h) profile analysis was performed using short time-series expression miner (STEM). The significantly expressed genes were assigned into 24 pattern clusters with four significant uptrend clusters. Four DEGs, Fcgr2a, Bcl2a1, Cxcl16, and Gbp2, were found to be differentially expressed at all time-points. Fifty-three DEGs and eight DEMIs were identified to form a miRNA-mRNA negative regulatory network using miRWalk3.0 and Cytoscape. Moreover, the mRNA levels of eight hub genes were validated by qRT-PCR. These DEGs, DEMIs, and time-dependent expression patterns facilitate our knowledge of the molecular mechanisms underlying the process of TBI in the hippocampus of rats and have the potential to improve the diagnosis and treatment of TBI.

摘要

高通量和生物信息学技术已广泛应用于展示外伤性脑损伤(TBI)相关的关键分子,而目前尚无研究整合现有的 TBI 相关数据集进行分析。在本研究中,对来自大鼠海马体的液压冲击伤(FPI)和假手术样本的四个可用表达数据集进行了分析。共鉴定出 248 个差异表达基因(DEGs)和 10 个差异表达 microRNA(DEMIs)。然后,使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析进行功能注释。大多数 DEGs 富集于炎症免疫反应相关术语。在 Cytoscape 软件中应用 MCODE 插件构建蛋白质-蛋白质相互作用(PPI)网络,结果显示 18 个枢纽基因富集于细胞周期通路。此外,使用短时间序列表达挖掘器(STEM)进行时间序列(3 h、6 h、12 h、24 h 和 48 h)分析。显著表达的基因被分配到 24 个模式簇中,其中 4 个显著上升簇。在所有时间点,发现 4 个 DEGs(Fcgr2a、Bcl2a1、Cxcl16 和 Gbp2)差异表达。使用 miRWalk3.0 和 Cytoscape 确定了 53 个 DEGs 和 8 个 DEMIs 形成 miRNA-mRNA 负调控网络。此外,通过 qRT-PCR 验证了 8 个枢纽基因的 mRNA 水平。这些 DEGs、DEMIs 和时程依赖性表达模式有助于我们了解大鼠海马体 TBI 过程中的分子机制,并有可能改善 TBI 的诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验