Deng Yinlong, Cai Peiwei, Zhang Li, Cao Xiongcheng, Chen Yequn, Jiang Shiyan, Zhuang Zhemin, Wang Bin
Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
Department of Preventive Medicine, Shantou University Medical College, Shantou, China.
Front Cardiovasc Med. 2022 Dec 16;9:1067760. doi: 10.3389/fcvm.2022.1067760. eCollection 2022.
Strain analysis provides more thorough spatiotemporal signatures for myocardial contraction, which is helpful for early detection of cardiac insufficiency. The use of deep learning (DL) to automatically measure myocardial strain from echocardiogram videos has garnered recent attention. However, the development of key techniques including segmentation and motion estimation remains a challenge. In this work, we developed a novel DL-based framework for myocardial segmentation and motion estimation to generate strain measures from echocardiogram videos.
Three-dimensional (3D) Convolutional Neural Network (CNN) was developed for myocardial segmentation and optical flow network for motion estimation. The segmentation network was used to define the region of interest (ROI), and the optical flow network was used to estimate the pixel motion in the ROI. We performed a model architecture search to identify the optimal base architecture for motion estimation. The final workflow design and associated hyperparameters are the result of a careful implementation. In addition, we compared the DL model with a traditional speck tracking algorithm on an independent, external clinical data. Each video was double-blind measured by an ultrasound expert and a DL expert using speck tracking echocardiography (STE) and DL method, respectively.
The DL method successfully performed automatic segmentation, motion estimation, and global longitudinal strain (GLS) measurements in all examinations. The 3D segmentation has better spatio-temporal smoothness, average dice correlation reaches 0.82, and the effect of target frame is better than that of previous 2D networks. The best motion estimation network achieved an average end-point error of 0.05 ± 0.03 mm per frame, better than previously reported state-of-the-art. The DL method showed no significant difference relative to the traditional method in GLS measurement, Spearman correlation of 0.90 ( < 0.001) and mean bias -1.2 ± 1.5%.
In conclusion, our method exhibits better segmentation and motion estimation performance and demonstrates the feasibility of DL method for automatic strain analysis. The DL approach helps reduce time consumption and human effort, which holds great promise for translational research and precision medicine efforts.
应变分析为心肌收缩提供了更全面的时空特征,有助于早期发现心脏功能不全。利用深度学习(DL)从超声心动图视频中自动测量心肌应变最近受到了关注。然而,包括分割和运动估计在内的关键技术的发展仍然是一个挑战。在这项工作中,我们开发了一种基于深度学习的新型框架,用于心肌分割和运动估计,以从超声心动图视频中生成应变测量值。
开发了三维(3D)卷积神经网络(CNN)用于心肌分割,以及光流网络用于运动估计。分割网络用于定义感兴趣区域(ROI),光流网络用于估计ROI中的像素运动。我们进行了模型架构搜索,以确定用于运动估计的最佳基础架构。最终的工作流程设计和相关超参数是仔细实施的结果。此外,我们在独立的外部临床数据上,将深度学习模型与传统的斑点追踪算法进行了比较。每个视频由一名超声专家和一名深度学习专家分别使用斑点追踪超声心动图(STE)和深度学习方法进行双盲测量。
深度学习方法在所有检查中成功地进行了自动分割、运动估计和整体纵向应变(GLS)测量。三维分割具有更好的时空平滑性,平均骰子系数相关性达到0.82,目标帧的效果优于以前的二维网络。最佳运动估计网络实现了每帧平均端点误差为0.05±0.03毫米,优于先前报道的最先进水平。深度学习方法在GLS测量中与传统方法相比无显著差异,Spearman相关性为0.90(<0.001),平均偏差为-1.2±1.5%。
总之,我们的方法表现出更好的分割和运动估计性能,并证明了深度学习方法用于自动应变分析的可行性。深度学习方法有助于减少时间消耗和人力,这对转化研究和精准医学工作具有巨大的前景。