Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4045-4051. doi: 10.1109/EMBC46164.2021.9629630.
Quantitative analysis of dynamic contrast-enhanced cardiovascular MRI (cMRI) datasets enables the assessment of myocardial blood flow (MBF) for objective evaluation of ischemic heart disease in patients with suspected coronary artery disease. State-of-the-art MBF quantification techniques use constrained deconvolution and are highly sensitive to noise and motion-induced errors, which can lead to unreliable outcomes in the setting of high-resolution MBF mapping. To overcome these limitations, recent iterative approaches incorporate spatial-smoothness constraints to tackle pixel-wise MBF mapping. However, such iterative methods require a computational time of up to 30 minutes per acquired myocardial slice, which is a major practical limitation. Furthermore, they cannot enforce robustness to residual nonrigid motion which can occur in clinical stress/rest studies of patients with arrhythmia. We present a non-iterative patch-wise deep learning approach for pixel-wise MBF quantification wherein local spatio-temporal features are learned from a large dataset of myocardial patches acquired in clinical stress/rest cMRI studies. Our approach is scanner-independent, computationally efficient, robust to noise, and has the unique feature of robustness to motion-induced errors. Numerical and experimental results obtained using real patient data demonstrate the effectiveness of our approach.Clinical Relevance- The proposed patch-wise deep learning approach significantly improves the reliability of high-resolution myocardial blood flow quantification in cMRI by improving its robustness to noise and nonrigid myocardial motion and is up to 300-fold faster than state-of-the-art iterative approaches.
定量分析动态对比增强心血管 MRI(cMRI)数据集可用于评估疑似冠心病患者的心肌血流(MBF),从而对缺血性心脏病进行客观评估。最先进的 MBF 量化技术使用约束反卷积,对噪声和运动引起的误差非常敏感,这可能导致在高分辨率 MBF 映射中产生不可靠的结果。为了克服这些限制,最近的迭代方法结合了空间平滑约束来解决像素级 MBF 映射问题。然而,这种迭代方法需要对每个采集的心肌切片进行长达 30 分钟的计算时间,这是一个主要的实际限制。此外,它们不能强制对残留的非刚性运动具有鲁棒性,而这种运动可能会在心律失常患者的临床应激/休息研究中发生。我们提出了一种非迭代的基于补丁的深度学习方法,用于像素级 MBF 量化,其中从临床应激/休息 cMRI 研究中采集的大量心肌补丁数据集学习局部时空特征。我们的方法与扫描仪无关,计算效率高,对噪声鲁棒,并且具有对运动引起的误差具有鲁棒性的独特特征。使用真实患者数据进行的数值和实验结果证明了我们方法的有效性。临床相关性- 所提出的基于补丁的深度学习方法通过提高对噪声和非刚性心肌运动的鲁棒性,显著提高了 cMRI 中高分辨率心肌血流定量的可靠性,并且比最先进的迭代方法快 300 倍。