Suppr超能文献

关于泊松两样本情形下的强大精确非随机检验。

On powerful exact nonrandomized tests for the Poisson two-sample setting.

作者信息

Wellek Stefan

机构信息

Department of Biostatistics, CIMH Mannheim, Mannheim Medical School of the University of Heidelberg, Mannheim, Germany.

Department of Medical Biostatistics, Epidemiology & Informatics, Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Germany.

出版信息

Stat Methods Med Res. 2020 Sep;29(9):2538-2553. doi: 10.1177/0962280219900901. Epub 2020 Jan 31.

Abstract

In the case of two independent samples from Poisson distributions, the natural target parameter for hypothesis testing is the ratio of the two population means. The conditional tests which have been derived for this class of problems already in the 1940s are well known to be optimal in terms of power only when randomized decisions between hypotheses are admitted at the boundary of the respective rejection regions. The major objective of this contribution is to show how the approach used by Boschloo in 1970 for constructing a powerful nonrandomized version of Fisher's exact test for hypotheses about the odds ratio between two binomial parameters can successfully be adapted for the Poisson case. The resulting procedure, which we propose to term Poisson-Boschloo test, depends on some cutoff for the observed total number of events, the variable upon which conditioning has to be done. We show that for any fixed specific alternative, this cutoff can be chosen in such a way that the resulting nonrandomized test falls short in power of the randomized UMPU test only by a negligible amount. Thus, sample size calculation for the Poisson-Boschloo test can be carried out nearly exactly by means of the same computational procedure as has to be used for the randomized UMPU test. Since the power of the latter is accessible to elementary computational tools, this result makes approximate methods of sample size calculation for the Poisson-Boschloo test dispensable. It is furthermore shown how the construction of a Poisson-Boschloo type test extends to the case that interest is in establishing equivalence in the strict, two-sided sense rather than noninferiority. Although proceeding to two-sided equivalence considerably complicates the construction, comparing the resulting test procedure in terms of power with the exact randomized UMPU test leads essentially to the same conclusions as in the noninferiority case.

摘要

对于来自泊松分布的两个独立样本,假设检验的自然目标参数是两个总体均值的比值。20世纪40年代就已针对此类问题推导出来的条件检验,众所周知,只有在各自拒绝区域的边界允许在假设之间进行随机决策时,其功效才是最优的。本论文的主要目的是展示1970年博世洛(Boschloo)用于构建关于两个二项式参数的优势比假设的强大非随机化版本的费希尔精确检验的方法,如何能成功地应用于泊松情形。我们提议将由此产生的检验程序称为泊松 - 博世洛检验,它取决于观察到的事件总数的某个截断值,而条件设定必须基于这个变量。我们表明,对于任何固定的特定备择假设,可以选择这样的截断值,使得由此产生的非随机化检验在功效上仅比随机化的一致最优势无偏检验低可忽略不计的量。因此,泊松 - 博世洛检验的样本量计算几乎可以通过与随机化的一致最优势无偏检验相同的计算程序精确地进行。由于后者的功效可通过基本的计算工具获得,这一结果使得泊松 - 博世洛检验的近似样本量计算方法变得不必要。此外,还展示了泊松 - 博世洛型检验的构建如何扩展到感兴趣的是在严格的双侧意义上建立等效性而非非劣效性的情况。尽管进行双侧等效性会使构建过程大大复杂化,但将由此产生的检验程序在功效方面与精确的随机化一致最优势无偏检验进行比较,基本上会得出与非劣效性情况相同的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验