Stucke Kathrin, Kieser Meinhard
Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
Biom J. 2013 Mar;55(2):203-16. doi: 10.1002/bimj.201200142. Epub 2013 Feb 8.
Clinical trials with Poisson distributed count data as the primary outcome are common in various medical areas such as relapse counts in multiple sclerosis trials or the number of attacks in trials for the treatment of migraine. In this article, we present approximate sample size formulae for testing noninferiority using asymptotic tests which are based on restricted or unrestricted maximum likelihood estimators of the Poisson rates. The Poisson outcomes are allowed to be observed for unequal follow-up schemes, and both the situations that the noninferiority margin is expressed in terms of the difference and the ratio are considered. The exact type I error rates and powers of these tests are evaluated and the accuracy of the approximate sample size formulae is examined. The test statistic using the restricted maximum likelihood estimators (for the difference test problem) and the test statistic that is based on the logarithmic transformation and employs the maximum likelihood estimators (for the ratio test problem) show favorable type I error control and can be recommended for practical application. The approximate sample size formulae show high accuracy even for small sample sizes and provide power values identical or close to the aspired ones. The methods are illustrated by a clinical trial example from anesthesia.
以泊松分布计数数据作为主要结局的临床试验在多个医学领域很常见,如多发性硬化症试验中的复发计数或偏头痛治疗试验中的发作次数。在本文中,我们给出了使用渐近检验来检验非劣效性的近似样本量公式,这些检验基于泊松率的受限或无限制最大似然估计量。泊松结局可针对不等随访方案进行观察,并且考虑了非劣效性界值以差值和比值表示的两种情况。评估了这些检验的准确I型错误率和检验效能,并检验了近似样本量公式的准确性。使用受限最大似然估计量的检验统计量(针对差值检验问题)以及基于对数变换并采用最大似然估计量的检验统计量(针对比值检验问题)显示出良好的I型错误控制,可推荐用于实际应用。近似样本量公式即使对于小样本量也显示出高精度,并提供与期望效能值相同或接近的效能值。通过一个麻醉领域的临床试验实例对这些方法进行了说明。