Dash Deba Prasad, Kolekar Maheshkumar H, Jha Kamlesh
Department of Electrical Engineering, Indian Institute of Technology, Patna, India.
Department of Physiology, All India Institute of Medical Sciences, Patna, India.
Comput Biol Med. 2020 Jan;116:103571. doi: 10.1016/j.compbiomed.2019.103571. Epub 2019 Dec 3.
Electroencephalography (EEG) is a non-invasive method for the analysis of neurological disorders. Epilepsy is one of the most widespread neurological disorders and often characterized by repeated seizures. This paper intends to conduct an iterative filtering based decomposition of EEG signals to improve upon the accuracy of seizure detection. The proposed approach is evaluated using All India Institute of Medical Science (AIIMS) Patna EEG database and online CHB-MIT surface EEG database. The iterative filtering decomposition technique is applied to extract sub-components from the EEG signal. The feature set obtained from each segmented intrinsic mode function consists of 2-D power spectral density and time-domain features dynamic mode decomposition power, variance, and Katz fractal dimension. The Hidden Markov Model (HMM) based probabilistic model has been designed using the above-stated features representing the seizure and non-seizure EEG events. The EEG signal is classified based on the maximum score obtained from the individual feature-based classifiers. The maximum score derived from each HMM classifier gives the final class information. The proposed decomposition of EEG signals achieved 99.60% and 99.74% accuracy in seizure detection for the online CHB-MIT surface EEG database and AIIMS Patna EEG database, respectively.
脑电图(EEG)是一种用于分析神经系统疾病的非侵入性方法。癫痫是最常见的神经系统疾病之一,通常以反复发作的癫痫发作为特征。本文旨在对脑电图信号进行基于迭代滤波的分解,以提高癫痫发作检测的准确性。使用全印度医学科学研究所(AIIMS)巴特那脑电图数据库和在线CHB - MIT表面脑电图数据库对所提出的方法进行评估。应用迭代滤波分解技术从脑电图信号中提取子分量。从每个分段的固有模式函数获得的特征集包括二维功率谱密度和时域特征,即动态模式分解功率、方差和卡茨分形维数。基于隐马尔可夫模型(HMM)的概率模型已使用上述表示癫痫发作和非癫痫发作脑电图事件的特征进行设计。根据从基于单个特征的分类器获得的最大分数对脑电图信号进行分类。每个HMM分类器得出的最大分数给出最终的类别信息。所提出的脑电图信号分解方法在在线CHB - MIT表面脑电图数据库和AIIMS巴特那脑电图数据库的癫痫发作检测中分别达到了99.60%和99.74%的准确率。