Suppr超能文献

一种用于医疗决策支持系统中癫痫发作检测的混合元启发式框架。

A hybrid metaheuristic framework for epileptic seizure detection in healthcare decision support systems.

作者信息

Dokare Indu, Gupta Sudha

机构信息

Department of Electronics Engineering, K. J. Somaiya School of Engineering (formerly K. J. Somaiya College of Engineering), Somaiya Vidyavihar University, Mumbai, 400077, Maharashtra, India.

Department of Computer Engineering, Vivekanand Education Society's Institute of Technology, Mumbai, 400074, Maharashtra, India.

出版信息

Acta Epileptol. 2025 Sep 1;7(1):42. doi: 10.1186/s42494-025-00238-y.

Abstract

BACKGROUND

The detection of epileptic seizures is a crucial aspect of epilepsy care, requiring precision and reliability for effective diagnosis and treatment. Seizure detection plays a critical role in healthcare informatics, aiding in the timely diagnosis and management of epilepsy. The use of computational intelligence and optimization techniques has shown significant promise in improving the performance of automated seizure detection systems.

METHODS

This research work proposes a novel hybrid approach that combines Ant Colony Optimization (ACO) for feature selection with Gray Wolf Optimization (GWO) to optimize the hyperparameters of a Random Forest (RF) classifier. In this patient-specific seizure detection, ACO effectively reduces the feature set, improving computational efficiency, while GWO ensures optimal RF performance. The method is evaluated on the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) and Seina datasets, which include multichannel EEG data from epileptic patients. Performance metrics such as accuracy, sensitivity, and specificity are employed to evaluate the effectiveness of the seizure detection system.

RESULTS

The proposed ACO-GWO-RF pipeline demonstrated excellent performance on the CHB-MIT dataset, with a mean accuracy of 96.70%, mean sensitivity of 92.66%, and mean specificity of 99.24%, outperforming existing approaches. The mean values of accuracy, sensitivity, and specificity obtained using the Seina dataset are 93.01%, 89.82%, and 96.26%, respectively. These improvements highlight the robustness of the hybrid metaheuristic method in handling complex EEG data.

CONCLUSIONS

The hybrid metaheuristic approach effectively optimizes the processing and classification of EEG data for seizure detection. Its strong performance across datasets suggests potential for integration into interactive health applications. Furthermore, its patient-specific adaptability makes it a promising tool for personalized epilepsy diagnosis, treatment, and long-term management.

摘要

背景

癫痫发作的检测是癫痫护理的关键环节,有效诊断和治疗需要精准性和可靠性。发作检测在医疗信息学中起着至关重要的作用,有助于癫痫的及时诊断和管理。计算智能和优化技术的应用在提高自动发作检测系统的性能方面显示出巨大潜力。

方法

本研究工作提出了一种新颖的混合方法,该方法将用于特征选择的蚁群优化(ACO)与灰狼优化(GWO)相结合,以优化随机森林(RF)分类器的超参数。在这种针对特定患者的发作检测中,ACO有效减少特征集,提高计算效率,而GWO确保RF的最佳性能。该方法在波士顿儿童医院 - 麻省理工学院(CHB - MIT)和Seina数据集上进行评估,这些数据集包含癫痫患者的多通道脑电图数据。采用准确率、灵敏度和特异性等性能指标来评估发作检测系统的有效性。

结果

所提出的ACO - GWO - RF管道在CHB - MIT数据集上表现出色,平均准确率为96.70%,平均灵敏度为92.66%,平均特异性为99.24%,优于现有方法。使用Seina数据集获得的准确率、灵敏度和特异性的平均值分别为93.01%、89.82%和96.26%。这些改进突出了混合元启发式方法在处理复杂脑电图数据方面的稳健性。

结论

混合元启发式方法有效地优化了用于发作检测的脑电图数据的处理和分类。其在多个数据集上的强大性能表明它有潜力集成到交互式健康应用中。此外,其针对特定患者的适应性使其成为个性化癫痫诊断、治疗和长期管理的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab4/12400604/1e208b1b23cc/42494_2025_238_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验